CSC 580
Cryptography and Computer Security

Public Key Cryptography - Ideas and RSA
(Related to parts of Chapters 9 and 10)

March 9, 2017

Overview

Today:
e HW 7 quiz
e Public Key Algorithms - ideas, math, and RSA

Next:
e Spring Break! Have fun!

e |f you want to be productive:
o Work on project phase 3
o Read Sections 2.4-2.6, 2.8, 10.1, 10.2
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Public Key Crypto

Where do the keys come from?

Symmetric Ciphers Public Key Crypto
Randomness (R) Randomness (R)

KeyPair Generator (KPG)

Secret Key (SK)
PubKey (PU)  PrivKey (PR)

Mathematical/Computational Properties

e KPG(R) — (PU, PR) is efficiently computatable (polynomial time)
e For all messages M, D(PR, E(PU, M)) =M (decryption works)

e Computing PR from PU is computationally infeasible (we hope!)

Generally: PR has some “additional information” that makes some function of PU
easy to compute (which is hard without that info) - this is the “trapdoor secret”

How can this be possible?

To get a sense of how trapdoor secrets help:

Problem: How many numbers x €{1,n-1} have gcd(x,N)>1 for N=32,501,477?
(or: how many have a non-trivial common factor with N?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?
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How can this be possible?

To get a sense of how trapdoor secrets help:

Problem: How many numbers x €{1,n-1} have gcd(x,N)>1 for N=32,501,477?
(or: how many have a non-trivial common factor with N?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?

What if | told you the prime factorization of N is 5,407 * 6,011?

5,406 multiples of 6,011 share the factor 6,011 with N

6,010 multiples of 5,407 share the factor 5,407 with N

No numbers in common between these two sets (prime numbers!)
So... 5,406+6,010 = 11,416 numbers share a factor with 32,501,477

The factorization of N is a “trapdoor” that allows you to compute some functions of N faster

Using Public Key Crypto in the JCA

Generating a keypair:

public static KeyPair genRSAKey(int bits) {
KeyPair kp = null;
try
RSAKeyGenParameterSpec kgspec = new RSAKeyGenParameterSpec(bits,
RSAKeyGenParameterSpec. F4) ;
KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");
kpg.initialize(kgspec);
Kp = kpg.genKeyPair();
} catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException ex) {
System.err.println(“Oops - basic RSA key generation failed (?)”);

return kp;

)

kp.getPublic() gives PublicKey (IS-A Key, so can be used to initialize a Cipher in ENCRYPT_MODE)
kp.getPrivate() gives PrivateKey (IS-A Key, so can be used to initialize a Cipher in DECRYPT_MODE)

Otherwise works just like Cipher with a symmetric cipher algorithm!

Related Notion - Key Agreement

Original idea - before public key encryption
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PubKey (PU,) PrivKey (PR,)

|

Bob

Randomness (R)

KeyPair Generator (KPG)

PubKey (PUg) PrivKey (PR;)

| !
Generate

r Secret (GS)
Generate
Secret (GS)
Secret (S) Secret (S)




Related Notion - Key Agreement
Original idea - before public key encryption

) Properties:
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Infeasible to compute S from only

public keys (PU, and PUp)
KeyPair Generator (KPG)

Note: No message - so can send
no information.

KeyPair Generator (KPG)
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( Secret (GS)
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Using Key Agreement in the JCA
For algorithm “DH” (Diffie-Hellman)

Generating a keypair requires first generating public parameters:

AlgorithmParameterGenerator paramGen =
AlgorithmParameterGenerator.getInstance("DH");
paramGen. init(2048);
AlgorithmParameters params
AlgorithmParameterSpec aps

paramGen.generateParameters();
paranms . getParameterSpec (DHParameterSpec. class);

But: Parameter generation can be slow so often done in advance and saved.
- Weakness recently found for this, however... be cautious!

Given parameters, Alice and Bob can do key agreement:

KeyPairGenerator kpg = KeyPairGenerator.getInstance(“DH”);

kpg.initialize(aps);

KeyPair aliceKP = kpg.genKeyPair();
iceKA = KeyAgreemen

tPrivate(

.getInstance(“DH”);

KeyAgreement a
aliceKA.init(a
aliceKA.doPhas
byte[] alices

generateSecret();

Key Sizes for Public Key Systems

From NIST publication 800-57a

Issue: PK algorithms based on mathematical relationships, and can be broken
with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher\ keys needed to be
- How big do keys in a public key system need to be?

‘Table 2: Comparable strengths
.. | Symmetric
- - Security FFC IFC ECC
From NIST pub 800-57a: Strength ulg:r’::hnw (£, DSA,D-H) | (eg.RSA) (eg. ECDSA)

=80 2TDEA? k=1024 f=160-223

12 3TDEA k=2048 | [=224255

128 AES-128 k=3072 | f=256383

192 | AES-192 k=T680 | f=384-511

256 AES-256 k= 15360 J=512+




Weakness in long-term fixed DH parameters

From 2015 ACM Conference on Computer and Communication Security:

Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice

David Adrian® Karthikeyan Bhargavan- Zakir Durumeric® Pierrick Gaudry' Matthew Green’
J. Alex Halderman® Nadia Heninger' Drew Springall' Emmanuel Thomé' Luke Valenta*
Benjamin VanderSloot® Eric Wustrow® Santiago Zanella-Béguelin' Paul Zimmermann'

* INRIA Pari 1INRIA Nancy-Grand Est, CNRS, and Université de Lorraine
I Microsoft Research  * University of Pennsylvania  *Johns Hopkins  *University of Michigan
For additional materials and contact information, visit WeakDH.org.

ABSTRACT

We investigate the security of Diffie-Hellman key exchange as
used in popular Internet protocols and find it to be less secure
than widely believed. First, we present Logjam, a novel flaw
in TLS that lets a man-in-the-middle downgrade connections
to “export-grade” Diffie-Hellman. To carry out this attack,
we implement the number field sieve discrete log algorithm.
After a week-long precomputation for a specified 512-bit
group, we can compute arbitrary discrete logs in that group
inabout a minute. We find that $2% of vulnerable servers use
a single 512-bit group, allowing us to compromise connections
%0 7% of Alexa Top Million HTTPS sites. In response, major
browsers are being changed to reject short groups

We g0 on to consider Diffie-Hellman with 768- and 1024-bit
groups. We estimate that even in the 1024-bit case, the com-
putations are plausible given nation-state resources. A small
number of fixed or standardized groups are used by millions
of servers; performing precomputation for a single 1024 bit
group would allow passive cavesdropping on 18% of popular
HTTPS sites, and a second group would allow decryption
of traffic to 66% of IPsec VPNs and 26% of SSH servers. A
close reading of published NSA leaks shows that the agency’s
attacks on VPNs are consistent with having achieved such
a break. We conclude that moving to stronger key exchange
methods should be a priority for the Internet community




