CSC 580
Cryptography and Computer Security

Public Key Cryptography - Ideas and RSA
(Related to parts of Chapters 9 and 10)

March 9, 2017

Overview

Today:
e HW 7 quiz
e Public Key Algorithms - ideas, math, and RSA

Next:
e Spring Break! Have fun!

e |f you want to be productive:
o Work on project phase 3
o Read Sections 2.4-2.6, 2.8, 10.1, 10.2

Recall Basic Idea

Network
Interface

aGXU4N<:1EVxxYEL4}
Oh7dP6]%<

ﬁ Keys the same or different?

Network
Interface
Different: “Public-key crypto”

Decryption
Some algorithms: RSA, ElGamal, Function
ECC, ...
ﬁ Best feature: Simpler key @
E management (can send to a

Encryption
Function

Decryption Key.

stranger!)
Worst feature: Slow (1-2 Mbps for Pay with
1234 5678 9012 3456

2048-bit RSA - others are a little
faster...)

ay with
1234 5678 9012 3456

Public Key Crypto

Where do the keys come from?

Symmetric Ciphers Public Key Crypto
Randomness (R) Randomness (R)

KeyPair Generator (KPG)

Secret Key (SK)
PubKey (PU) PrivKey (PR)

Mathematical/Computational Properties

e KPG(R) — (PU, PR) is efficiently computatable (polynomial time)
e For all messages M, D(PR, E(PU, M)) =M (decryption works)

e Computing PR from PU is computationally infeasible (we hope!)

Generally: PR has some “additional information” that makes some function of PU
easy to compute (which is hard without that info) - this is the “trapdoor secret”

How can this be possible?

To get a sense of how trapdoor secrets help:

Problem: How many numbers x €{1,n-1} have gcd(x,N)>1 for N=32,501,477?
(or: how many have a non-trivial common factor with N?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?

How can this be possible?

To get a sense of how trapdoor secrets help:

Problem: How many numbers x €{1,n-1} have gcd(x,N)>1 for N=32,501,477?
(or: how many have a non-trivial common factor with N?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?

What if | told you the prime factorization of N is 5,407 * 6,011?

How can this be possible?

To get a sense of how trapdoor secrets help:

Problem: How many numbers x €{1,n-1} have gcd(x,N)>1 for N=32,501,477?
(or: how many have a non-trivial common factor with N?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?

What if | told you the prime factorization of N is 5,407 * 6,011?

5,406 multiples of 6,011 share the factor 6,011 with N

6,010 multiples of 5,407 share the factor 5,407 with N

No numbers in common between these two sets (prime numbers!)
So... 5,406+6,010 = 11,416 numbers share a factor with 32,501,477

The factorization of N is a “trapdoor” that allows you to compute some functions of N faster

Using Public Key Crypto in the JCA

Generating a keypair:

public static KeyPair genRSAKey(int bits) {
KeyPair kp = null;
try
RSAKeyGenParameterSpec kgspec = new RSAKeyGenParameterSpec(bits,
RSAKeyGenParameterSpec. F4) ;
KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");
kpg.initialize(kgspec);
Kp = kpg.genKeyPair();
} catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException ex) {
System.err.println(“Oops - basic RSA key generation failed (?)”);

return kp;

)

kp.getPublic() gives PublicKey (IS-A Key, so can be used to initialize a Cipher in ENCRYPT_MODE)
kp.getPrivate() gives PrivateKey (IS-A Key, so can be used to initialize a Cipher in DECRYPT_MODE)

Otherwise works just like Cipher with a symmetric cipher algorithm!

Related Notion - Key Agreement

Original idea - before public key encryption

Alice
Randomness (R)

KeyPair Generator (KPG)

PubKey (PU,) PrivKey (PR,)

|

Bob

Randomness (R)

KeyPair Generator (KPG)

PubKey (PUg) PrivKey (PR;)

| !
Generate

r Secret (GS)
Generate
Secret (GS)
Secret (S) Secret (S)

Related Notion - Key Agreement
Original idea - before public key encryption

) Properties:
Alice e PKKeyPair properties Gob
Randomnoss (R) o GS(PU,PR,)=GS(PU, PR,) Randomness (R)

Infeasible to compute S from only

public keys (PU, and PUp)
KeyPair Generator (KPG)

Note: No message - so can send
no information.

KeyPair Generator (KPG)

PubKey (PU,) PrivKey (PR,) But two sides get a shared secret PubKey (PU,) PrivKey (PR;)

| |

(Secret (GS)
Generate
Secret (GS)
Secret (S) Secret (S)

Using Key Agreement in the JCA
For algorithm “DH” (Diffie-Hellman)

Generating a keypair requires first generating public parameters:

AlgorithmParameterGenerator paramGen =
AlgorithmParameterGenerator.getInstance("DH");
paramGen. init(2048);
AlgorithmParameters params
AlgorithmParameterSpec aps

paramGen.generateParameters();
paranms . getParameterSpec (DHParameterSpec. class);

But: Parameter generation can be slow so often done in advance and saved.
- Weakness recently found for this, however... be cautious!

Given parameters, Alice and Bob can do key agreement:

KeyPairGenerator kpg = KeyPairGenerator.getInstance(“DH”);

kpg.initialize(aps);

KeyPair aliceKP = kpg.genKeyPair();
iceKA = KeyAgreemen

tPrivate(

.getInstance(“DH”);

KeyAgreement a
aliceKA.init(a
aliceKA.doPhas
byte[] alices

generateSecret();

Key Sizes for Public Key Systems

From NIST publication 800-57a

Issue: PK algorithms based on mathematical relationships, and can be broken
with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher\ keys needed to be
- How big do keys in a public key system need to be?

‘Table 2: Comparable strengths
.. | Symmetric
- - Security FFC IFC ECC
From NIST pub 800-57a: Strength ulg:r’::hnw (£, DSA,D-H) | (eg.RSA) (eg. ECDSA)

=80 2TDEA? k=1024 f=160-223

12 3TDEA k=2048 | [=224255

128 AES-128 k=3072 | f=256383

192 | AES-192 k=T680 | f=384-511

256 AES-256 k= 15360 J=512+

Weakness in long-term fixed DH parameters

From 2015 ACM Conference on Computer and Communication Security:

Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice

David Adrian® Karthikeyan Bhargavan- Zakir Durumeric® Pierrick Gaudry' Matthew Green’
J. Alex Halderman® Nadia Heninger' Drew Springall' Emmanuel Thomé' Luke Valenta*
Benjamin VanderSloot® Eric Wustrow® Santiago Zanella-Béguelin' Paul Zimmermann'

* INRIA Pari 1INRIA Nancy-Grand Est, CNRS, and Université de Lorraine
I Microsoft Research * University of Pennsylvania *Johns Hopkins *University of Michigan
For additional materials and contact information, visit WeakDH.org.

ABSTRACT

We investigate the security of Diffie-Hellman key exchange as
used in popular Internet protocols and find it to be less secure
than widely believed. First, we present Logjam, a novel flaw
in TLS that lets a man-in-the-middle downgrade connections
to “export-grade” Diffie-Hellman. To carry out this attack,
we implement the number field sieve discrete log algorithm.
After a week-long precomputation for a specified 512-bit
group, we can compute arbitrary discrete logs in that group
inabout a minute. We find that $2% of vulnerable servers use
a single 512-bit group, allowing us to compromise connections
%0 7% of Alexa Top Million HTTPS sites. In response, major
browsers are being changed to reject short groups

We g0 on to consider Diffie-Hellman with 768- and 1024-bit
groups. We estimate that even in the 1024-bit case, the com-
putations are plausible given nation-state resources. A small
number of fixed or standardized groups are used by millions
of servers; performing precomputation for a single 1024 bit
group would allow passive cavesdropping on 18% of popular
HTTPS sites, and a second group would allow decryption
of traffic to 66% of IPsec VPNs and 26% of SSH servers. A
close reading of published NSA leaks shows that the agency’s
attacks on VPNs are consistent with having achieved such
a break. We conclude that moving to stronger key exchange
methods should be a priority for the Internet community

