Homework 11 - Due Tuesday, April 18

1. In this problem, we revisit the DAA MAC scheme from the previous homework: if the input message is D_{1}, \ldots, D_{N}, and $E(K, M)$ is the encryption function for any block cipher, such as DES or AES, we first compute

$$
\begin{aligned}
O_{1} & =E\left(K, D_{1}\right) \\
O_{2} & =E\left(K, D_{2} \oplus O_{1}\right) \\
& \cdots \\
O_{N} & =E\left(K, D_{N} \oplus O_{N-1}\right) .
\end{aligned}
$$

The final MAC is O_{N}. If we know that the MAC of a single block message D_{1} is T, it is possible to figure out what the MAC of the two block message $D_{1}, T \oplus D_{1}$ is, even if you don't know the key. What is it? Justify your answer (show your work).
2. There are two main authenticated encryption techniques described in the book, CCM and GCM. Describe at least two advantages of GCM over CCM.
3. Both MACs and digital signature schemes are designed with the goal of being resistant to "existential forgery." Describe what this means and why this is an important property.

