
The University of North Carolina at Greensboro Handout 15

CSC 580: Cryptography and Security in Computing March 2, 2017

Prof. Stephen R. Tate

Project Phase 3 – Due Tuesday, March 28

In the previous phase of the project, you implemented basic encryption/decryption capabilities

using a symmetric cipher, and integrated that into the communication/chat system. However,

we did not have any way to establish those secret keys, and in this phase you will explore

various public key encryption and key agreement algorithms to get a feel for their strengths,

weaknesses, and efficiency. Then you will implement an extension to the chat protocol that

includes one of these techniques, the elliptic curve version of Diffie-Hellman key exchange.

Looking ahead, in phase 4 you will be investigating integrity protections, both for keys and

for messages. Code that supports all parts of this assignment is in a Bitbucket repository

named “CSC580-Phase3” in which the code for benchmarking (the first two problems) is in

PKBenchmark.java and the rest of the code is a working solution to Phase 2 of the project.

1. If Alice wants to set up a secret key with Bob that they can use with a symmetric cipher,

she can use RSA as follows: She gets a copy of Bob’s RSA public key (his encryption

key), generates a random AES “session key,” encrypts the session key using RSA and

Bob’s public key, and sends this ciphertext to Bob. For this part of phase 3, you should

benchmark RSA to see how fast RSA encryption and decryption are with a 2048 bit key.

The supplied code (in Bitbucket) gets you started by providing a method that generates an

RSA key. You should write two other methods — on that uses the public key to encrypt

(repeating so that the total time is approximately 10 seconds), and one that decrypts.

Note that for decryption, you’ll need a valid ciphertext, so do one encryption to generate

a ciphertext, and then repeatedly decrypt that ciphertext for benchmarking. You should

report the outcome of this experiment giving number of encryptions per second, number

of bits encrypted per second, number of decryptions per second, and number of bits

decrypted per second.

2. Key agreement protocols are designed for the purpose of creating a shared secret between

the two (or more) interacting parties, and these algorithms fall under the KeyAgreement

class in the JCA. You are to benchmark two different algorithms: traditional Diffie-

Hellman key agreement, with a 2048-bit modulus, and Elliptic Curve Diffie-Hellman

with a 224 bit modulus. These algorithms require certain parameters to be defined, and

these parameters and some initialization code is included in the Bitbucket repository. To

benchmark Alice’s operations for Diffie-Hellman, you will need Bob’s public key, which

you get through the getBobPublicDH() and getBobPublicECDH() methods.

Your code should include calls to the KeyAgreement methods init, doPhase, and

generateSecret. Report the outcome of these experiments giving the number of

key agreements performed in one second by each algorithm.



2 Handout 15: Project Phase 3 – Due Tuesday, March 28

3. In the previous exercises, you should have seen that Elliptic Curve Diffie-Hellman key

agreement is the most efficient solution to setting up a key. In this part, you should

integrate ECDH into the chat system, which you can develop and test by connecting to

the echatbot3 user (remember the “3”!). To do this, we add a notion of “commands”

to the chat client interactions, where a command is a message that begins with a colon

character (’:’). Since a colon is not a valid character in base64 encoding, commands can

be distinguished from encrypted messages. The commands that must be supported for

this phase are in the following table.

Command Description

:ka start key agreement with a list supported cipher suites

:kaok acknowledge key agreement and select cipher suite

:ka1 “phase 1” of key agreement (public key)

:err send message for recoverable error (e.g., decryption failed)

:fail send message for non-recoverable error (reset conversation)

Commands are followed by an argument that provides additional information for that

command (e.g., the public key of your partner with the :ka1 command).

A chat session can be in one of four states, and the valid actions that can be taken in any

state (and commands that are expected) are described below.

Initial state: All conversations start in this state. The receiver of a connection request

immediately sends a “:ka” command with the single argument being a comma-

separated list of acceptable cipher suites. Each cipher suite has 3 parts separated

by the plus character (’+’): a key establishment algorithm, a means for ensuring

integrity of public keys, and a symmetric cipher. The only cipher suite that should

be supported now is named “ecdh-secp224r1+nocert+aes128/cbc” —

don’t worry about what the “nocert” part means for now, but make sure you

include it! Once this “:ka” command is sent, the client enters a “waiting for cipher

suite confirmation” state.

The party that initiated the conversation will receive this “:ka” command with

cipher suites while it is in the initial state, and should respond with a “:kaok”

command and an argument that is a single cipher suite that it selects. Again, for

this phase only the cipher suite named above should be supported. After sending the

“:kaok” command, the client can immediately generate a public key pair for the

key agreement algorithm and send the base64 encoded public key as the argument

to a “:ka1” command (the first phase of key agreement). This client then enters a

“waiting for key agreement” state.

Waiting for cipher suite confirmation: In this state, the client should only receive a

“:kaok” command with the name of a single cipher suite to use. This should be the



Handout 15: Project Phase 3 – Due Tuesday, March 28 3

name given above — anything else in this phase of the assignment is an error. Once

this command is received, with the proper cipher suite, the client should generate a

public key pair for the key agreement algorithm and send the base64 encoded public

key as the argument to a “:ka1” command (the first phase of key agreement). This

client then enters a “waiting for key agreement” state.

Waiting for key agreement: In this state, the client is waiting for the “:ka1” message

from the other side, so this is the only command that should be received. Once

this is received, the client combines the received public key with its private key to

generate the shared secret. There are various ways that this secret can be turned into

a key, but for this assignment we do something simple: take the last 16 bytes of the

shared secret byte array (do not use the first 16 bytes — those are not as uniformly

distributed as the last 16 bytes!). After the symmetric cipher key is created, you

should save the key for future use, and enter the “established” state.

Established: This is the normal operating state for the conversation, where the two sides

have already agreed on a cipher suite and have established a shared secret key. In

this state, encrypted messages are sent and received much like in the previous phase

of the project, with the main difference being that now each conversation uses its

own secret key that is unknown to any passive eavesdroppers. Note that there is

still the possibility of a man-in-the-middle attack, which we will address in the

final phase of the project!

The following diagram shows messages sent in an actual chat session. The first two

messages set the cipher suite. The next two perform the ECDH key agreement protocol.

After this, both clients are in the “established” state, and the final two messages show an

encrypted message being sent in each direction.

:ka ecdh�secp224r1+nocert+aes128/cbc

:kaok ecdh�secp224r1+nocert+aes128/cbc

:ka1 ME4wEAYHKoZIzj0CAQYFK4EEACEDOgAEVzX1Lnbn+8DYAv...

:ka1 ME4wEAYHKoZIzj0CAQYFK4EEACEDOgAEA49tvx5qUkleQC...

rQhdEp/RGAk4PbYEU+FFz+HMbsIXInh3J+ijUvsc8NE=

RA04Th+0pzhDh3SVEwk1pP+fFSZhq6Af9TTu9uMltuv5WTmM2K+...

Alice Bob


