
The University of North Carolina at Greensboro Handout 18

CSC 580: Cryptography and Security in Computing March 28, 2017

Prof. Stephen R. Tate

Project Phase 4 – Due Tuesday, April 25

If you successfully completed phase 3 of the project, you should now have a chat client that

sends and receives messages that are secure with respect to a passive adversary. In other words,

the message contents will remain secret from any adversary that doesn’t actively tamper with

the communication. In this, the final phase, you will incorporate integrity protections to ensure

that you are chatting with the right user and that messages are not tampered with. By com-

pleting this phase, you will have a chat client that meets all of the basic security requirements

set out at the beginning of class, although our interface does not have a way to send non-text

messages (this is a user-interface issue, however, not an issue with the underlying chat system).

The solution should protect against even a malicious chat hub, and provides forward secrecy

for conversations. My solution for phase 3 will be available in BitBucket as soon as all student

submissions for phase 3 have been made, and you can start from either my phase 3 solution or

your own.

1. For this part, you will generate a keypair and get a certificate that binds your public

key to your username. Your chat program must utilize a “KeyStore” that stores both

your own keypairs as well as certificates of known and trusted others. A keystore can

be created and updated through the command-line tool “keytool,” which is a standard

part of the Java SDK. In the UNCG computer labs, all you need to do is open a command

prompt and type “keytool” to run the program. Just running the program without any

command-line arguments gives a list of commands that can be used, and documentation

is at http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html.

Keys stored in the keystore are accessed by an “alias,” and for this program you should

use the following naming convention: for keys that you own (so have both public and

private keys), you should use the alias mykey-username, where username should

be replaced by your UNCG username (e.g., user joe would store his key under alias

mykey-joe). The keystore will be stored in a file that you choose and protected

with a password that you select. The default values in the code I am providing use

chatapp.ks as the keystore file and defaultPW for the password, but you can

change these if you want. You need to be careful about what directory you store the

keystore file in — if you don’t use a full pathname and you are using NetBeans, it is

easiest to store the file in the main NetBeans project directory. You should change into

that directory before executing any of the keytool commands.

To generate your own keypair, use the -genkeypair command as shown below. Note

that you must use your UNCG username as your chat system username, both in the alias



2 Handout 18: Project Phase 4 – Due Tuesday, April 25

name and in response to the first prompt asking for “first and last name” (despite the

prompt, don’t use your name here — enter your username). The interaction, showing the

creation of a keypair for user joe is shown below (only the “name” field is really used

in the chat system, but use reasonable values for the other fields as shown below).

prompt$ keytool -keystore chatapp.ks -genkeypair -alias mykey-joe

Enter keystore password:

Re-enter new password:

What is your first and last name?

[Unknown]: joe

What is the name of your organizational unit?

[Unknown]: CSC580

What is the name of your organization?

[Unknown]: UNCG

What is the name of your City or Locality?

[Unknown]: Greensboro

What is the name of your State or Province?

[Unknown]: NC

What is the two-letter country code for this unit?

[Unknown]: US

Is CN=joe, OU=CSC580, O=UNCG, L=Greensboro, ST=NC, C=US correct?

[no]: yes

Enter key password for <mykey-joe>

(RETURN if same as keystore password):

Next, you will need to get a certificate from a trusted certification authority (that’s me!)

for your key. To do this, extract a “certificate request” from the keystore as shown below

keytool -keystore chatapp.ks -certreq -alias mykey-joe -rfc -file cert.req

This creates a file named cert.req which you should email me as an attachment from

your UNCG email account. I will create the certificate and email it back to you —

and only to your UNCG account, and only if the request account matches the name in

the certificate request! The response will be a certificate, with a name like joe.crt

as well as the certification authority certificate ca.crt. You will need to first install

the CA certificate using the -importcert command to keytool, and then you can

install your own certificate (use the same alias for your certificate as you did when you

generated the key). After you complete these steps, your keystore will be ready to use

by the chat program.

2. For this part, you will change the chat protocol so that the users exchange certificates and

sign their :ka1 public key exchange messages. To use the more secure protocols, you



Handout 18: Project Phase 4 – Due Tuesday, April 25 3

should connect to user “echatbot4”, which differs from “echatbot3” in some important

ways. First, “echatbot4” will provide two different ciphersuites on its “:ka” message:

ecdh-secp224r1+x509+aes128/cbc (note that “nocert” from phase 3 changed

to “x509”) and ecdh-secp224r1+x509+aes128/gcm128. Until you get to part

5 below, you should answer with :kaok ecdh-secp224r1+x509+aes128/cbc

and just work on authenticating users (not messages).

This changes two things about the chat protocol:

• The :ka1 message should be immediately preceded by a “:cert xxxx” mes-

sage, where xxxx is where your Base64-encoded certificate goes.

• The :ka1 message now has two parts, each Base64 encoded and separated by

spaces. The first part is simply the public key for the key agreement protocol,

and the second part is a signature on the public key, made using the private key

corresponding to the certificate that you shared in the preceding :cert message.

The provided code includes a partially-implemented ChatKeyManager class, along

with a new version of the LoginCredentials class which allows it to keep track

of the ChatKeyManager to be used with any logged-in hub session. See the code

for details. The ChatKeyManager class includes the header for a method named

verifyCertAndSig that you will need to fill in. This method takes the name of

the party you are trying to communicate with, their certificate, the key exchange data,

and the signature, and returns either a String describing an error or returns null if

everything verifies (right now it always returns null, so it accepts anything!). In partic-

ular, you code should check that the certificate is signed by the chat system Certification

Authority, it is within the date range for validity, and the common name (“CN”) is the

username of the person you want to be chatting with. If that verifies, then the signature

on the key exchange data should also be verified. If any of these checks doesn’t pass,

your Conversation class should send a :fail message with the error description

and then shut down the conversation. If all of the checks are passed, then you can com-

plete the key agreement protocol and now you have established communication with a

remote party whose identity you have verified!

3. For this part, you will provide a means for the user to see the fingerprint of the remote

party’s certificate. The provided code adds a new menu item named “Other Party Info”

to the GUI “Connection” menu, which is enabled only when there is an active connec-

tion. The action taken when this is enabled and selected by the user is to simply call

convo.getOtherInfo() to get a String describing the other user. The resulting

information window should look something like this:



4 Handout 18: Project Phase 4 – Due Tuesday, April 25

To maintain compatibility with keytool, the fingerprint is the SHA1 hash of the cer-

tificate.

4. For this part, you will use your keypair to log in to the chat hub. In the new version of

the LoginCredentials class, there is a constructor that takes a ChatKeyManager

object, but does not take a password string. If this constructor is used, then the system

should use your keypair to log in as follows: The LoginCredentials method ge-

tUserID method now returns “pubkey username” instead of just “username,” and when

this is passed along to the chathub server it indicates that you want to use a public key

authentication method to log in. The chat hub then sends a random string back as a

challenge — you should complete the code in the LoginCredentials class that will

answer by prepending the string “login-” to the received challenge, signing that using

your private key (corresponding to your certificate), and then sending both your cer-

tificate and the signature (both Base64 encoded, and separated by spaces) back as the

answer to the challenge. If your certificate verifies as valid, the name in the certificate

matches your claimed username, and the signature is valid, then you will be logged in.

5. For this part, you will add message integrity protection by using GCM mode for the sym-

metric cipher. Once you have all of the above parts working, you should change your

:kaok message to select the ecdh-secp224r1+x509+aes128/gcm128 cipher-

suite, and switch the cipher to use GCM mode instead of CBC mode. This requires

setting up parameters differently, using the GCMParameterSpec class, and catch-

ing AEADBadTagException to detect when the message integrity check fails. In

GCMParameterSpec, you should use a “tag length” of 128 bits. Information about

how to use GCM mode is given in both the JCA documentation and in the Cipher class

API documentation.

6. Extra Credit: Extend the chat application so that it can save user certificates, and warn

the user if a received certificate does not match the saved certificate. The details of how

you do this is up to you. One possibility is to add a menu item to save the other party’s

certificate. After the certificate is saved, any subsequent connection to that user that

provides a different certificate than the saved one you indicates a potential security issue,

so you would give the user a warning (and possibly give an option to connect anyway).


