Homework 2 - Due Tuesday, February 6

1. What is the closest power of two to
(a) 16 million
(b) 4 billion
(c) number of nanoseconds in one week
(d) number of seconds in 8 years
2. This is the "extreme, over-the-top, super-secure keysize security" estimation problem. Consider if you could convert an entire planet into one big computer (suggestion: read The Hitchhiker's Guide to the Galaxy if you haven't) — look in the table of large numbers and find how many atoms are in the Earth, and assume that you can make a logic gate out of every 8 atoms in the planet. Next, assume that you can clock those gates at the fastest imaginable speed, the frequency of ultraviolet light, which would be a $1,000 \mathrm{THz}$ computer, and testing a key takes at least 1000 Boolean operations. Finally, a "supersecure" cipher is one that cannot be brute-forced (on average) in under 128 years. What keysize would need to be used so that a cipher is "super-secure" against attacks using this ultra-fast full-planet computer? You can (and should!) estimate all values as powers of two when you solve this problem.
3. Prove that if a, b, and n are positive integers, then $a \bmod n=b \bmod n$ if and only if $a \equiv b \quad(\bmod n)$ (where the first equation uses \bmod as an operator, and the second equation uses the equivalence relation definition of mod).
