CSC 580
Cryptography and Computer Security

Encryption Concepts, Classical Crypto, and Binary Operations

January 30, 2018

Overview

Today:

- Cryptography concepts and classical crypto

Textbook sections 3.1, 3.2 (except Hill cipher), 3.5

- Working in Binary

To do before Thursday:

- Study for quiz on HW1!
- Read Sections 4.1, 4.2, 4.4
- Start talking to project team members to solidify project ideas

Introduction to Cryptography
Confidentiality Protection for Messages

Introduction to Cryptography
Confidentiality Protection for Messages

Some Terminology

Cryptography: Making codes Cryptanalysis: Breaking codes
Cryptology: The science of both (generally "cryptography" now)
Participants traditionally given names:

- Alice and Bob are legitimate users
- Trent is a "trusted third party"
- Eve is a passive adversary (an eavesdropper)
- Mallory is an active adversary (malicious...)

Encipher and encrypt are synonyms (also decipher/decrypt)
Written as functions:

| $\begin{array}{ll}\text { Written as functions: } & \\ \bullet \text { - } \mathrm{C}=\mathrm{E}\left(\mathrm{K}_{\mathrm{e}}, \mathrm{P}\right) & \mathrm{E}: \mathcal{K} \times \mathscr{P} \rightarrow C \\ \text { - } \mathrm{P}=\mathrm{D}\left(\mathrm{K}_{\mathrm{d}}, \mathrm{C}\right) & \mathrm{D}: \mathcal{K} \times C \rightarrow \mathscr{P}\end{array}$ | $\mathcal{K}:$ "Keyspace" |
| :--- | :--- | :--- |
| $\mathscr{P}:$ "Plaintext space" | |
| C | |

Kerckhoff's Principle

The book (section 3.1) talks about "two requirements for secure use of conventional encryption" - these requirements are from:

Kerckhoff's Principle (1883): The security of a cryptosystem depends on the strength of the algorithm and the secrecy of the key.

Trying to keep algorithms secret ("security through obscurity") almost never works.

- DVD Content Scrambling System (CSS)
- Mobil Speedpass
- Every digital rights management system ever... (a slightly different issue)

Remember design principles: Open Design

- Better to use a system that experts have pounded on (and failed to break)

Block vs Stream Ciphers

Plaintext Input$01101 . .1101$ Block Ciphers			
- Must be given a minimum amount of data			
Key $\sqrt[\substack{\text { Block } \\ \text { Cipher }}]{\substack{\text { Cin } \\ \hline}}$	- Typical symmetric cipher block - If not enough data to fill a block - Wait for more data, or	128 bits ither	
	- Pad the block with extra bits	1	
$11010 \ldots 0110$ Ciphertext Output		1	
		$\\|_{0}^{1}$	
Stream Cipher	nits - bits or bytes	Stream Cipher	
- Bit-oriented st - Consider inter	am cipher: one bit in, one bit out	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
		1	

Attacker Information/Access

What information/access does the attacker have?

Real-world examples for all models

Interesting point: In the 2014 movie The Imitation Game, "breakthrough" in cracking German code was basically shifting model from "ciphertext only" to "known plaintext"

Types of Attacks

Cryptanalysis

- Analyzes ciphertext/algorithm for patterns or structural properties to get information
- Example: If most keys used by a cipher result in "a" being replaced by " M ", then that's a big clue!
- Can lead to very fast attacks on weak encryption algorithms!

Brute Force

- Try every possible key to see which produces a "sensible" plaintext - Need to distinguish sensible plaintext from non-sensible
- Average tests required to break: $|\mathcal{K}| / 2$ (half the keyspace size)

Question: Given a baseline of 1 billion tests/second, how big does the keyspace need to be for brute force to be impractical (use powers of 2).

Classical Cryptography

Generalized Caesar Cipher
Generalized Caesar Cipher: Shift by k places \qquad
Example: Shift $k=5$ places

Keyspace size: $|\mathcal{K}|=26$
Trivial size to brute force, looking for sensible English.

Classical Cryptography

Arbitrary Monoalphabetic Substitution
Arbitrary substitute: Any one-to-one mapping can be used \qquad Example:

$$
\begin{aligned}
& \text { Keyspace size: }|\mathcal{K}|=26!=403,291,461,126,605,635,584,000,000 \\
& \approx 4 \times 10^{26}
\end{aligned}
$$

Testing 1 billion keys $/$ second takes $4 \times 10^{20} \mathrm{sec}=128$ million centuries
\qquad
Cryptanalysis! Letter frequencies, patterns, ..

Classical Cryptography

Vigenère Polyalphabetic Substitution
Idea: Have a sequence of shifts ($k_{1}, k_{2}, \ldots, k_{p}$) as key

- After all p are used, start over with k_{1}
- p is the period of the cipher
- Since different positions use different substitutions, evens out frequencies

Example with key ($4,1,22,12$):
Plaintext: s eccccccccccccccc Shift: $4 \begin{array}{lllllllllllllllll} & 1 & 22 & 12 & 4 & 1 & 22 & 12 & 4 & 1 & 22 & 12 & 4 & 1 & 22 & 12 & 4\end{array}$ Ciphertext: W F Y \quad D I U

Questions for the class to answer:

- If our alphabet has 64 values (26 upper case, 26 lower, 10 digits, 2 punctuation), what is keyspace size a given p ?
- How large does p have to be for this to be out of range of brute force attacks?

Important: Don't use, even with large p - not stuck with brute force, as there are good cryptanalytic attacks.

Classical Cryptography
 One-Time Pad - On Letters

Idea: Vigenère key repeats after p positions. So don't repeat!

- Requires key to be as long as plaintext
- Key should be picked randomly (uniform distribution)

Example: Use http://www.braingle.com/brainteasers/codes/onetimepad.php
Ciphertext: GRLKOMB
Key test 1: GOQKBKX
Key test 2: PNSTKMI
Question: What is the probability that test key 1 is used by sender? What about test key 2? Any reason to believe, as the attacker, that one is more probable than the other?

Recall from brute-force: "Need to distinguish sensible plaintext from non-sensible"
More on one-time pad security after talking about binary operators...

Binary Operations

AND and OR
Recall basic bitwise operations
(Operands are really symmetric, but often thought of as "data" and "mask")

10011101	(data)
$\frac{\text { AND } 00001111}{00001101}$	(mask)

\qquad
\qquad
AND operation:

- "0" position in mask are cleared

OR operation:

- "0" position in mask are copied
- "1" position in mask are set

Widely used (with shift operators) for manipulating individual bits or packing small data fields into single bytes/words.

Binary Operations
 Exclusive OR

10011101	(data)
XOR 01010101	(mask)
11001000	

XOR operation:

- "0" position in mask are copied
- "1" position in mask are flipped

Writing as a formula: for bytes/words/bitvectors x and y , use " $\mathrm{x} \oplus \mathrm{y}$ "
Question 1: What do you think $((x \oplus y) \oplus y)$ is?
Question 2: If y is chosen as a completely random bitvector:

- What is the probability that the first bit of $\mathrm{x} \oplus \mathrm{y}$ is 0 ? Is 1?
- What is the probability that the last bit of $\mathrm{x} \oplus \mathrm{y}$ is 0 ? Is 1 ?

One-Time Pad On Bytes

Idea: Same as with letters, but use XOR instead of alphabet shift

- Let m be a b-bit long plaintext message
- Let k be a b-bit long random bitvector (uniformly distributed)
- Calculate ciphertext $c=m \oplus \mathrm{k}$

Consider captured ciphertext c and to possible plaintext messages m_{1} and m_{2}

- No a priori reason to think m_{1} or m_{2} is more likely
- Possibility 1: m_{1} was the message-key is $k_{1}=c \oplus m_{1}$
- Possibility 2: m_{2} was the message - key is $k_{2}=c \oplus m_{2}$
- $\operatorname{Prob}\left(k_{1}\right.$ chosen $)=\operatorname{Prob}\left(k_{2}\right.$ chosen $)=1 / 2^{b}$

Bottom line: Every b-bit long message is possible, each with equally likely keys
Perfect confidentiality - as long as you never re-use any portion of the key!
Example of failure to use properly: Venona

One-Time Pad

Is perfect confidentiality perfect security?
Scenario of an instructor sending a grade to registar using OTP:
Alice (instructor) sends a message containing grade ' F ': char value 0×46 Uses OTP key 0xD9 \rightarrow ciphertext is $0 \times 9 \mathrm{~F}$

Mallory intercepts message ($0 \times 9 \mathrm{~F}$) and XORs with ' F ' \oplus ' A ' $=0 \times 46 \oplus 0 \times 41=0 \times 07$ $\rightarrow 0 \times 9 \mathrm{~F} \oplus 0 \times 07=0 \times 98$

Bob (registrar) receives message 0×98 and XORs with OTP key 0xD9 $\rightarrow 0 \times 98 \oplus 0 \times D 9=0 \times 41={ }^{\prime} \mathrm{A}^{\prime}$

OTP is a malleable cipher: An active attacker can make a change to the ciphertext that will make a predictable change in the plaintext recovered by the receiver.

Bottom line: OTP has perfect confidentiality, but is very hard to use (key management) and is very weak with respect to message integrity

Steganography

Hiding the existence of a message

Steganography

Hiding the existence of a message

The message was "On the Internet, nobody knows you're a dog."

It was embedded using the "outguess" steganography software.

