CSC 580
 Cryptography and Computer Security

Block Ciphers, DES, and AES

February 6, 2018

Overview

Today:

- HW2 solutions review
- Block ciphers, DES, and AES
- Textbook sections 4.1, 4.2, 4.4 plus AES handout

To do before Thursday:

- Study for quiz over HW2 material
- Read textbook sections 7.1-7.6

DES and AES for CSC 580

We will focus on how to use block ciphers securely.

Important to understand big picture issues:

- What parameters describe block ciphers?
- What properties does a good block cipher have?
- How do parameters affect those properties?
- How did parameters change historically as capabilities grew?

How block ciphers work (internals):

- We will view as a "black box" with certain I/O behavior
- Internals are interesting, but avoided here to save time

Block Ciphers - General

Properties of a block cipher

\# bits in input is "block size"

Plaintext Input 01101 ... 1101

11010 ... 0110 Ciphertext Output

- Must supply a full block of input bits in order to evaluate
- Typical block sizes: 64 or 128 bits
- Every execution of the block cipher is independent of others (stream ciphers typically carry forward state)
- However - block ciphers used in ways that carry state forward - more on modes later
- A good block cipher can be modeled as a pseudo-random permutation
- Appears random to adversary, so no cryptanalysis - stuck doing brute force

This fits nicely with our "view symmetric ciphers as secure black boxes" approach.

Random Block Ciphers The ideal (and impractical) case

A general encryption function replaces plaintexts with ciphertexts and must be reversible.

Picking a random function is like picking a random permutation of the message space.

- Permutation because 1-to-1
- Number of permutations: $|\mathscr{P}|$!

For a b-bit block cipher, $|\mathcal{P}|=2^{b}$

- Number of permutations is $\left(2^{b}\right)$!

For $b=3$, there are $8!=40,320$ permutations
For $b=8$, there are $256!\approx 10^{507} \approx 2^{1684}$

To specify one of 256 ! permutations you a need $\log _{2}(256!) \approx 1684$ bit long key

Pseudorandom vs Random

How big a key do you need to specify a permutation of 64-bit values?
Answer: $\log _{2}\left(2^{64}\right)!\approx 10^{21}$ bits - the key alone is 1000 million TB
Consequence: Can't pick a random permutation

- Picking from a limited domain of permutations: pseudorandom permutation
- Uses a small random seed (key!) to compute random-looking data

We can formalize this into a rigorous definition - and we will later!

Some Pre-DES Historical Notes

Claude Shannon

- Worked for the National Defense Research Committee during WWII
- Moved to Bell Labs in 1945
- Wrote classified paper "A Mathematical Theory of Cryptography" in 1945
- Proved security of one-time pad and the necessity of certain OTP properties for perfect security (any cipher with perfect security will be similar to a OTP).
- Declassified version "Communication Theory of Secrecy Systems" - 1949
- Defined "unicity distance" - basically how much ciphertext is needed for brute force attacker to recognize plaintext unambiguously
- Very influential paper "A Mathematical Theory of Communication" in 1948
- Established the field of Information Theory
- Formalized notions such as "entropy" and measuring information in bits

Important civilian post-WWII, pre-1970 cryptography work done at IBM

- Key players: Horst Feistel, Don Coppersmith, Alan Hoffman, Alan Konheim

Feistel Network

Based on Figure 4.3 from the textbook (corrected!)

If " F " is a pseudorandom function indexed by key K_{1}, transforms right-side data into a pseudo-one-time-pad for left-side.

In one round, left side is modified (substitution) then sides swapped (permutation).

- One round clearly not secure since half just carried forward
- Since one side affects the other, transformation "spreads out" (diffusion) over multiple rounds

Concepts to work through from diagram

- Requirements on F (injective? no!)
- Decryption relation to encryption

DES - The Data Encryption Standard History

May 1973: Feistel publishes description of enhanced Lucifer cipher: 128-bit keys and 128-bit blocks

May 1973: NBS (National Bureau of Standards - now NIST) releases call for proposals for a standard encryption algorithm.

Aug 1974: NBS releases 2nd call after no acceptable submissions from first call. IBM submits this time.

March 1975: After NSA review, modifications were made to the F function (modified S-boxes) and key length (reduced to 56 bits). This became "DES".

DES - The Data Encryption Standard Basic Parameters, Controversy, and Context

DES parameters:

- Block size: 64 bits
- Key size: 56 bits (87-bit characters, with parity bits)
- Feistel network with 16 rounds
- Feistel "F function" based on 4-bit substitutions (S-boxes)

Controversy - why were changes made?

- Warning sign: DES never cleared for secret data - only "confidential"
- Changed S-boxes - do they contain a backdoor for NSA?
- 1994: Revealed that changes protected against differential cryptanalysis - discovered in "open literature" in 1990
- To this day: Only really practical attacks on DES are brute force
- Reduced key length - why?
- 56-bits is "secure enough" against non-nation-state adversaries
- But the NSA had (and still has!) a big budget for big machines

DES - The Data Encryption Standard

A peek inside

DES F function:

" E " is an expansion function - one input bit can affect two S-box inputs S-boxes are pseudo-random substitutions (with certain properties)
P is a bit-by-bit permutation

DES - The Data Encryption Standard A peek inside

What does P look like?

Diagram from Wikipedia
Moves individual bits around.
Think about doing this in software vs hardware - how efficient?
DES also includes a similar bit-by-bit "initial permutation" (and final)
Bottom line: DES is not easy/efficient to implement in software.

DES - The Data Encryption Standard Efficiency and Security

From papers published 1984-1986:

- Proposed (paper) hardware estimated about 1 million encr/sec
- Actual (built) hardware ran around 300,000 enc/sec
- Best software implementation: about 2,500 enc/sec (Vax 11/780)

Question: How long on average for a brute force attack?
Part a: Using one custom HW chip
Part b: Using 1,000,000 custom HW chips
Part c: Using software

Modern technology

- General purpose hardware: approx 10,000,000 enc/sec/core - HW: How long to brute force on one core? On 512 cores?
- Special-purpose HW - COPACOBANA (\$10,000): 48 billion enc/sec
- How long now?

DES - The Data Encryption Standard Bottom Line

Single DES can no longer be considered secure

Triple-DES (3-DES) extends keyspace to $56 * 3=168$ bits

- Big enough to be secure against brute force
- Inefficient (times 3!) in software
- Still has a 64-bit block size (bad for certain applications)

Conclusions:

- Good to understand history/evolution of cryptography
- Good introduction to block cipher concepts
- But don't use DES now...

Next: What key parameters need improvement in a replacement?

What Parameters are Important?

Key size: Can brute force a 56-bit key in a matter of days now
Algorithm design: DES is inefficient in software

Block size:

- "Collision attacks" follow "birthday problem" probabilities
- With just 23 people, 50% chance that two have the same birthday
- Roughly square-root of "universe size" (sqrt(365) = 19.1...)
- Applies to some applications of block ciphers
- "universe" is number of possible ciphertext outputs
- $\operatorname{sqrt}\left(2^{64}\right)=2^{32}$ - requirement for both time and space (memory)
- Trivial by today's standards

What values would be good today?

Key Size
 Is 128 bits enough?

2004 Estimate: $\$ 100 k$ machine breaks 56-bit DES key in 6 hours
What about a 128-bit key?
$\$ 100 \mathrm{k}$ machine takes $>10^{18}$ years [the earth is $<10^{10}$ years old]
What if we spent $\$ 100,000,000,000$?
Would take $>10^{12}$ years
What about Moore's law saying that in 20 years machines will be about 16,000 times faster?

Would take $>10^{8}$ years
OK, what about in 40 years (machines 100 million times faster)?
Would still take $>30,000$ years
Do you really think Moore's law will last this long?

Block Size
 Is 128 bits enough?

Birthday attack:

- Requires sqrt($\left(2^{128}\right)=2^{64}$ time and space
- Space is $2^{64} 128$-bit entries, for a total of $16^{*} 2^{64}=2^{68}$ bytes
- One terabyte is 2^{40} bytes \rightarrow requires 256 million terabytes
- At $\$ 25 / T B$ that would cost around $\$ 6.4$ billion (plus power, ...)

Seems pretty safe...

AES Selection Process

1993-1995: Clipper Chip fiasco
1997: Request for proposals for new standard block cipher

- Must use 128-bit block
- Must support 128-bit, 192-bit, and 256-bit keys
- Selection process through open evaluation

1999: 15 good submissions narrowed to 5 finalists
2000: Winner selected

- Winner was an algorithm named Rijndael (limited to 128-bit blocks)
- Invented/submitted by Vincent Rijmen and Joan Daemen (Belgians)

Important points:

- Very open, public process
- No secret modifications
- Not rushed

AES - Some Final Points

In 20 years, no practical cryptanalytic attacks discovered
Approved for protecting classified information

- 128 bit keys for SECRET
- 192 or 256 bit keys for TOP SECRET
- Note: implementation must be approved

Efficiency

- Works on byte/word units: Efficient in software!
- Widespread standard \rightarrow special fast CPU instructions now
- Intel AES-NI instructions: over 10 gigabits/sec on a single core!
- OpenSSL demo...
- Still simple enough for special-purpose hardware
- 30+ Gbps possible

