CSC 580 Cryptography and Computer Security

Block Ciphers, DES, and AES

February 6, 2018

Overview

Today:

- HW2 solutions review
- Block ciphers, DES, and AES
 - Textbook sections 4.1, 4.2, 4.4 plus AES handout

To do before Thursday:

- Study for quiz over HW2 material
- Read textbook sections 7.1-7.6

DES and AES for CSC 580

We will focus on *how to use block ciphers securely*.

Important to understand big picture issues:

- What parameters describe block ciphers?
- What properties does a good block cipher have?
- How do parameters affect those properties?
- How did parameters change historically as capabilities grew?

How block ciphers work (internals):

- We will view as a "black box" with certain I/O behavior
- Internals are interesting, but avoided here to save time

Block Ciphers - General

Properties of a block cipher

- Must supply a full block of input bits in order to evaluate
- Typical block sizes: 64 or 128 bits
- Every execution of the block cipher is independent of others (stream ciphers typically carry forward state)
 - However block ciphers <u>used</u> in ways that carry state forward - more on modes later
- A good block cipher can be modeled as a pseudo-random permutation
 - Appears random to adversary, so no cryptanalysis - stuck doing brute force

This fits nicely with our "view symmetric ciphers as secure black boxes" approach.

Random Block Ciphers

The ideal (and impractical) case

A general encryption function replaces plaintexts with ciphertexts and must be reversible.

Picking a random function is like picking a random permutation of the message space.

- Permutation because 1-to-1
- Number of permutations: |P|!

For a *b*-bit block cipher, $|\mathcal{P}| = 2^b$

Number of permutations is (2^b)!

For b=3, there are 8! = 40,320 permutations

For *b*=8, there are 256! $\approx 10^{507} \approx 2^{1684}$

3-bit block example:

<u>Input</u>			<u>Output</u>	
(0)	000	\rightarrow	011	(3)
(1)	001	\rightarrow	101	(5)
(2)	010	\rightarrow	111	(7)
(3)	011	\rightarrow	000	(0)
(4)	100	\rightarrow	110	(6)
(5)	101	\rightarrow	010	(2)
(6)	110	\rightarrow	001	(1)
(7)	111	\rightarrow	100	(4)
I				

To specify one of 256! permutations you a need log₂(256!) ≈ 1684 bit long key

Pseudorandom vs Random

How big a key do you need to specify a permutation of 64-bit values?

Answer: $\log_2(2^{64})! \approx 10^{21}$ bits - the key alone is 1000 million TB

Consequence: Can't pick a random permutation

- Picking from a limited domain of permutations: <u>pseudorandom permutation</u>
- Uses a small random seed (key!) to compute random-looking data

We can formalize this into a rigorous definition - and we will later!

Some Pre-DES Historical Notes

Claude Shannon

- Worked for the National Defense Research Committee during WWII
- Moved to Bell Labs in 1945
- Wrote classified paper "A Mathematical Theory of Cryptography" in 1945
 - Proved security of one-time pad and the necessity of certain OTP properties for perfect security (<u>any cipher with perfect security</u> will be similar to a OTP).
 - Declassified version "Communication Theory of Secrecy Systems" 1949
 - Defined "unicity distance" basically how much ciphertext is needed for brute force attacker to recognize plaintext unambiguously
- Very influential paper "A Mathematical Theory of Communication" in 1948
 - Established the field of Information Theory
 - Formalized notions such as "entropy" and measuring information in bits

Important civilian post-WWII, pre-1970 cryptography work done at IBM

• Key players: Horst Feistel, Don Coppersmith, Alan Hoffman, Alan Konheim

Feistel Network

Based on Figure 4.3 from the textbook (corrected!)

Output (ciphertext)

If "F" is a pseudorandom function indexed by key K₁, transforms right-side data into a pseudo-one-time-pad for left-side.

In one round, left side is modified (substitution) then sides swapped (permutation).

- One round clearly not secure since half just carried forward
- Since one side affects the other, transformation "spreads out" (diffusion) over multiple rounds

Concepts to work through from diagram

- Requirements on F (injective? no!)
- Decryption relation to encryption

History

Basic Parameters, Controversy, and Context

DES parameters:

- Block size: 64 bits
- Key size: 56 bits (8 7-bit characters, with parity bits)
- Feistel network with 16 rounds
- Feistel "F function" based on 4-bit substitutions (S-boxes)

Controversy - why were changes made?

- Warning sign: DES never cleared for secret data only "confidential"
- Changed S-boxes do they contain a backdoor for NSA?
 - 1994: Revealed that changes protected against differential cryptanalysis
 discovered in "open literature" in 1990
 - To this day: Only really practical attacks on DES are brute force
- Reduced key length why?
 - 56-bits is "secure enough" against non-nation-state adversaries
 - But the NSA had (and still has!) a big budget for big machines

A peek inside

DES F function:

Diagram from Wikipedia

"E" is an expansion function - one input bit can affect two S-box inputs S-boxes are pseudo-random substitutions (with certain properties)

P is a bit-by-bit permutation

A peek inside

What does P look like?

Diagram from Wikipedia

Moves individual bits around.

Think about doing this in software vs hardware - how efficient?

DES also includes a similar bit-by-bit "initial permutation" (and final)

Bottom line: DES is **not** easy/efficient to implement in software.

Efficiency and Security

From papers published 1984-1986:

- Proposed (paper) hardware estimated about 1 million encr/sec
- Actual (built) hardware ran around 300,000 enc/sec
- Best software implementation: about 2,500 enc/sec (Vax 11/780)

Question: How long on average for a brute force attack?

Part a: Using one custom HW chip

Part b: Using 1,000,000 custom HW chips

Part c: Using software

Modern technology

- General purpose hardware: approx 10,000,000 enc/sec/core
 - HW: How long to brute force on one core? On 512 cores?
- Special-purpose HW COPACOBANA (\$10,000): 48 billion enc/sec
 - O How long now?

DES - The Data Encryption Standard Bottom Line

Single DES can no longer be considered secure

Triple-DES (3-DES) extends keyspace to 56*3 = 168 bits

- Big enough to be secure against brute force
- Inefficient (times 3!) in software
- Still has a 64-bit block size (bad for certain applications)

Conclusions:

- Good to understand history/evolution of cryptography
- Good introduction to block cipher concepts
- But don't use DES now...

Next: What key parameters need improvement in a replacement?

What Parameters are Important?

Key size: Can brute force a 56-bit key in a matter of days now

Algorithm design: DES is inefficient in software

Block size:

- "Collision attacks" follow "birthday problem" probabilities
 - With just 23 people, 50% chance that two have the same birthday
 - Roughly square-root of "universe size" (sqrt(365) = 19.1...)
- Applies to some applications of block ciphers
 - o "universe" is number of possible ciphertext outputs
 - o $sqrt(2^{64}) = 2^{32}$ requirement for both time and space (memory)
 - Trivial by today's standards

What values would be good today?

Key SizeIs 128 bits enough?

2004 Estimate: \$100k machine breaks 56-bit DES key in 6 hours

What about a 128-bit key? \$100k machine takes >10¹⁸ years [the earth is <10¹⁰ years old]

What if we spent \$100,000,000,000? Would take >10¹² years

What about Moore's law saying that in 20 years machines will be about 16,000 times faster?

Would take >108 years

OK, what about in 40 years (machines 100 million times faster)? Would still take >30,000 years

Do you really think Moore's law will last this long?

Block Size

Is 128 bits enough?

Birthday attack:

- Requires $sqrt(2^{128}) = 2^{64}$ time and space
- Space is 2^{64} 128-bit entries, for a total of $16*2^{64} = 2^{68}$ bytes
- One terabyte is 2⁴⁰ bytes → requires 256 million terabytes
- At \$25/TB that would cost around \$6.4 billion (plus power, ...)

Seems pretty safe...

AES Selection Process

1993-1995: Clipper Chip fiasco

1997: Request for proposals for new standard block cipher

- Must use 128-bit block
- Must support 128-bit, 192-bit, and 256-bit keys
- Selection process through open evaluation

1999: 15 good submissions narrowed to 5 finalists

2000: Winner selected

- Winner was an algorithm named Rijndael (limited to 128-bit blocks)
- Invented/submitted by Vincent Rijmen and Joan Daemen (Belgians)

Important points:

- Very open, public process
- No secret modifications
- Not rushed

More trust!

AES - Some Final Points

In 20 years, no practical cryptanalytic attacks discovered

Approved for protecting classified information

- 128 bit keys for SECRET
- 192 or 256 bit keys for TOP SECRET
- Note: implementation must be approved

Efficiency

- Works on byte/word units: Efficient in software!
- Widespread standard → special fast CPU instructions now
 - Intel AES-NI instructions: over 10 gigabits/sec on a single core!
 - OpenSSL demo...
- Still simple enough for special-purpose hardware
 - 30+ Gbps possible