CSC 580 Cryptography and Computer Security

Public-Key Encryption Idea and Some Supporting Math (Sections 9.1, 2.4-2.6)

March 13, 2018

Overview

Today

- Basic idea/motivation for public-key cryptography
- Math needed for RSA (working with prime numbers, etc.)

Next:

- Read Section 9.2 (RSA)
- Don't forget that you have a graded homework to work on!

Public Key Crypto

Where do the keys come from?

Symmetric Ciphers Randomness (R) Randomness (R) Randomness (R) KeyPair Generator (KPG) PubKey (PU) PrivKey (PR)

Mathematical/Computational Properties

- KPG(R) → (PU, PR) is efficiently computable (polynomial time)
- For all messages M, D(PR, E(PU, M)) = M (decryption works)
- Computing PR from PU is computationally infeasible (we hope!)

Generally: PR has some "additional information" that makes some function of PU easy to compute (which is hard without that info) - this is the "trapdoor secret"

How can this be possible?

To get a sense of how trapdoor secrets help:

<u>Problem</u>: How many numbers $x \in \{1,N-1\}$ have gcd(x,N)>1 for N=32,501,477? (or: how many have a non-trivial common factor with N?)

How could you figure this out? How long would it take to compute? What if *N* were 600 digits instead of 8 digits?

How can this be possible?

To get a sense of how trapdoor secrets help:

<u>Problem</u>: How many numbers $x \in \{1,N-1\}$ have gcd(x,N)>1 for N=32,501,477? (or: how many have a non-trivial common factor with N?)

How could you figure this out? How long would it take to compute? What if *N* were 600 digits instead of 8 digits?

What if I told you the prime factorization of N is 5,407 * 6,011?

How can this be possible?

To get a sense of how trapdoor secrets help:

<u>Problem</u>: How many numbers $x \in \{1,N-1\}$ have gcd(x,N)>1 for N=32,501,477? (or: how many have a non-trivial common factor with N?)

How could you figure this out? How long would it take to compute? What if *N* were 600 digits instead of 8 digits?

What if I told you the prime factorization of N is 5,407 * 6,011?

5,406 multiples of 6,011 share the factor 6,011 with *N* 6,010 multiples of 5,407 share the factor 5,407 with *N* No numbers in common between these two sets (prime numbers!) So... 5,406+6,010 = 11,416 numbers share a factor with 32,501,477

The factorization of N is a "trapdoor" that allows you to compute some functions of N faster

A Step Toward Public-Key Crypto

So, when solving the problem: Given a number N, how many positive integers share a non-trivial factor with N?

- If you know the prime factorization of N, this is easy.
- If you don't know the factorization, don't know efficient solution

How does this fit into the public key crypto model?

- Pick two large (e.g., 1024-bit) prime numbers p and q
- Compute the product N = p * q
- Public key is N (hard to find p and q!), private is the pair (p,q)

Questions:

- How do we pick (or detect) large prime numbers?
- How do we use this trapdoor knowledge to encrypt?

Prime Numbers

A prime number is a number p for which its only positive divisors are 1 and p

Question: How common are prime numbers?

- The Prime Number Theorem states that there are approximately n / ln n prime numbers less than n.
- Picking a random b-bit number, probability that it is prime is approximately 1/ln(2^b) = (1/ln 2)*(1/b) ≈ 1.44 * (1/b)
 - o For 1024-bit numbers this is about 1/710
 - "Pick random 1024-bit numbers until one is prime" takes on average 710 trials ("pick random <u>odd</u> 1024-number" finds primes faster!)
 - o This is efficient if we can tell when a number is prime!

<u> </u>	

		_			
Prim	ality 1	Γesti	ing		
Problem	n: Given a	numbe	r n, is it pr	ime?	
Basic al	gorithm: T	ry divid	ling all nur	mbers 2,,	sqrt(n) into
Questio	n: How lor	ng does	this take	if <i>n</i> is 1024	bits?
	41 - 1	:441	The s		
-erm	ıat's L	LITTIE	Theo	rem	
To do be	etter, we r	need to	understan	id some pr	operties of
	s, such as			pi	.,
Fam: -/'	- 1 :W - T'		المادا		0 00-141.
	<i>s Little The</i> sible by <i>p</i> ,		ıı p ıs prin	ne and <i>a</i> is	a positive
	,,,,		a ^{p-1} ≡ 1 (m	od <i>p</i>) .	
D (:		10 - (!!		/1 !!ff	.141\
Proof is	on page 4	of the	e textbook	(not difficu	μιτ!).
Ferm	nat's L	_ittle	Theo	rem -	cont'c
Explore	this formu	ıla for d	lifferent va	lues of n a	nd randon
	a a	n-1 mod n (n = 221)	a ⁿ⁻¹ mod n (n = 331)	a ⁿ⁻¹ mod n (n = 441)	a ⁿ⁻¹ mod n (n = 541)
	64	1	1	379	1
	189	152	1	0	1
	147	191	1	46	1
	1				

Question 1: What conclusion can be drawn about the primality of 221?

Question 2: What conclusion can be drawn about the primality of 331?

Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for *n*:

Pick random $a \in \{2, \ldots, n-2\}$ if $a^{n-1} \mod n \neq 1$ then return "not prime" else return "probably prime"

Why doesn't this work?

Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for *n*:

Pick random $a \in \{2, \ldots, n-2\}$ if $a^{n-1} \mod n \neq 1$ then return "not prime" else return "probably prime"

Why doesn't this work? Carmichael numbers....

Example: 2465 is obviously not prime, but -

Note: Not just for these a's, but $a^{n-1} \mod n = 1$ for **all** a's that are relatively prime to n.

a ⁿ⁻¹ mod n (n = 2465)
1
1
1
1
1
1

Primality Testing - Miller-Rabin

The previous idea is good, with some modifications (Note: This corrects a couple of typos in the textbook):

MILLER-RABIN-TEST(n) // Assume n is odd
Find k>0 and q odd such that n-1 = 2^kq
Pick random a ∈ {2, ..., n-2}
x = a^q mod n
if x = 1 or x = n-1 then return "possible prime"
for j = 1 to k-1 do
x = x² mod n
if x = n-1 then return "possible prime"
return "composite"

<u>Idea</u>: Run 50 times, and accept as prime iff all say "possible prime" <u>Question</u>: What is the error probability?

<u>Euler's totient function</u> : $\phi(n)$ = number of integers from 1 n -1 that are relatively prime to n .	
 If s(n) is count of 1n-1 that share a factor with n, φ(n) = n - 1 - s(n) s(n) was our "trapdoor function" example φ(n) easy to compute if factorization of n known Don't know how to efficiently compute otherwise 	
• If n is product of two primes, $n=p^*q$, then $s(n)=(p-1)+(q-1)=p+q-2$ • So $\phi(p^*q)=p^*q-1-(p+q-2)=p^*q-p-q+1=(p-1)^*(q-1)$	
Euler generalized Fermat's Little Theorem to composite moduli:	
<u>Euler's Theorem</u> : For every a and n that are relatively prime (i.e., $gcd(a,n)=1$), $a^{\phi(n)} \equiv 1 \pmod{n}$.	
Question: How does this simplify if <i>n</i> is prime?	
Next Time	
Next Time	
Next Time In the next class we'll see the RSA Public-Key Encryption Scheme uses this!	
In the next class we'll see the RSA Public-Key	