CSC 580
Cryptography and Computer Security

Public-Key Encryption Idea and Some Supporting Math (Sections 9.1, 2.4-2.6)

March 13, 2018

Overview

Today:

- Basic idea/motivation for public-key cryptography
- Math needed for RSA (working with prime numbers, etc.)

Next:

- Read Section 9.2 (RSA)
- Don't forget that you have a graded homework to work on!

Recall Basic Idea

Public Key Crypto
Where do the keys come from?

Mathematical/Computational Properties

- $\mathrm{KPG}(\mathrm{R}) \rightarrow(\mathrm{PU}, \mathrm{PR})$ is efficiently computable (polynomial time)
- For all messages $M, D(P R, E(P U, M))=M \quad$ (decryption works)
- Computing PR from PU is computationally infeasible (we hope!)

Generally: PR has some "additional information" that makes some function of PU easy to compute (which is hard without that info) - this is the "trapdoor secret"

How can this be possible?

To get a sense of how trapdoor secrets help:
Problem: How many numbers $x \in\{1, N-1\}$ have $\operatorname{gcd}(x, N)>1$ for $N=32,501,477$? (or: how many have a non-trivial common factor with N ?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?

How can this be possible?

To get a sense of how trapdoor secrets help:
Problem: How many numbers $x \in\{1, N-1\}$ have $\operatorname{gcd}(x, N)>1$ for $N=32,501,477$? (or: how many have a non-trivial common factor with N ?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?
What if I told you the prime factorization of N is $5,407^{*} 6,011$?

How can this be possible?

To get a sense of how trapdoor secrets help:
Problem: How many numbers $x \in\{1, N-1\}$ have $\operatorname{gcd}(x, N)>1$ for $N=32,501,477$? (or: how many have a non-trivial common factor with N ?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?
What if I told you the prime factorization of N is 5,407 * 6,011 ?
5,406 multiples of 6,011 share the factor 6,011 with N
6,010 multiples of 5,407 share the factor 5,407 with N
No numbers in common between these two sets (prime numbers!)
So... $5,406+6,010=11,416$ numbers share a factor with $32,501,477$

The factorization of N is a "trapdoor" that allows you to compute some functions of N faster

A Step Toward Public-Key Crypto

So, when solving the problem: Given a number N, how many positive integers share a non-trivial factor with N ?

- If you know the prime factorization of N, this is easy.
- If you don't know the factorization, don't know efficient solution

How does this fit into the public key crypto model?

- Pick two large (e.g., 1024-bit) prime numbers p and q
- Compute the product $N=p^{*} q$
- Public key is N (hard to find p and $q!$), private is the pair (p, q)

Questions:

- How do we pick (or detect) large prime numbers?
- How do we use this trapdoor knowledge to encrypt?

Prime Numbers

A prime number is a number p for which its only positive divisors are 1 and p

Question: How common are prime numbers?

- The Prime Number Theorem states that there are approximately $n / \ln n$ prime numbers less than n.
- Picking a random b-bit number, probability that it is prime is approximately $1 / \ln \left(2^{b}\right)=(1 / \ln 2)^{*}(1 / b) \approx 1.44^{*}(1 / b)$
- For 1024-bit numbers this is about $1 / 710$
- "Pick random 1024-bit numbers until one is prime" takes on average 710 trials ("pick random odd 1024-number" finds primes faster!)
- This is efficient - if we can tell when a number is prime!

Primality Testing

Problem: Given a number n, is it prime?
Basic algorithm: Try dividing all numbers $2, . .$, sqrt(n) into n
Question: How long does this take if n is 1024 bits?

Fermat's Little Theorem

To do better, we need to understand some properties of prime numbers, such as...

Fermat's Little Theorem: If p is prime and a is a positive integer not divisible by p, then

$$
a^{p-1} \equiv 1(\bmod p)
$$

Proof is on page 46 of the textbook (not difficult!).

Fermat's Little Theorem - cont'd

Explore this formula for different values of n and random a 's: \qquad

a	$a^{n-1} \bmod n$ $(n=221)$	$a^{n-1} \bmod n$ $(n=331)$	$a^{n-1} \bmod n$ $(n=441)$	$a^{n-1} \bmod n$ $(n=541)$
64	1	1	379	1
189	152	1	0	1
82	191	1	46	1
147	217	1	0	1
113	217	1	232	1
198	81	1	270	1

\qquad
\qquad
\qquad

Question 1: What conclusion can be drawn about the primality of 221? Question 2: What conclusion can be drawn about the primality of 331 ?

Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for n :
Pick random $a \in\{2, \ldots, n-2\}$
if $a^{n-1} \bmod n \neq 1$ then return "not prime"
else return "probably prime" \qquad

Why doesn't this work?

Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for n : \qquad
Pick random a $\in\{2, \ldots, n-2\}$
if $a^{n-1} \bmod n \neq 1$ then return "not prime"
else return "probably prime" \qquad

Why doesn't this work? Carmichael numbers.

Example: 2465 is obviously not prime, but

	$(n=2465)$ $(n 4$
64	
189	1
82	1
147	1
113	1
198	1

\qquad
\qquad
Note: Not just for these a 's, but $a^{n-1} \bmod n=1$ for all a's that are relatively prime to n. \qquad

- \qquad

Primality Testing - Miller-Rabin

The previous idea is good, with some modifications (Note: This corrects a couple of typos in the textbook):

MILLER-RABIN-TEST(n) // Assume n is odd
Find $\mathrm{k}>0$ and q odd such that $\mathrm{n}-1=2^{\mathrm{k}} \mathrm{q}$
Pick random $a \in\{2, \ldots, n-2\}$
$x=a^{q} \bmod n$
if $x=1$ or $x=n-1$ then return "possible prime"
for $j=1$ to $k-1$ do
$\mathrm{x}=\mathrm{x}^{2} \bmod \mathrm{n}$
if $x=n-1$ then return "possible prime"
return "composite"
If n is prime, always returns "possible prime"
If n is composite, says "possible prime" (incorrect) with probability < $1 / 4$ \qquad
Idea: Run 50 times, and accept as prime iff all say "possible prime" Question: What is the error probability?

Euler's Totient Function and Theorem

Euler's totient function: $\phi(n)=$ number of integers from 1 .. $n-1$ that are relatively prime to n.

- If $s(n)$ is count of $1 . . n-1$ that share a factor with $n, \phi(n)=n-1-s(n)$
- $s(n)$ was our "trapdoor function" example
- $\phi(n)$ easy to compute if factorization of n known
- Don't know how to efficiently compute otherwise
- If n is product of two primes, $n=p^{*} q$, then $s(n)=(p-1)+(q-1)=p+q-2$ - So $\phi\left(p^{*} q\right)=p^{*} q-1-(p+q-2)=p^{*} q-p-q+1=(p-1)^{*}(q-1)$

Euler generalized Fermat's Little Theorem to composite moduli: \qquad
Euler's Theorem: For every a and n that are relatively prime (i.e., $\operatorname{gcd}(a, n)=1$), $a^{\phi(n)} \equiv 1(\bmod n)$.

Question: How does this simplify if n is prime?

Next Time...

In the next class we'll see the RSA Public-Key Encryption Scheme uses this!

