
CSC 580
Cryptography and Computer Security

The RSA Algorithm and Key Size Issues
(Section 9.2 and more)

March 15, 2018

Overview

Today:
● Overview/demo of research tools

● The RSA Algorithm - key sizes and factoring

Next:
● Read Sections 2.8, 10.1, and 10.2

● Complete ungraded homework 6

● Remember to be working on graded homework 2 (due next Thurs)

First up… some demos of research tools

Tools being demonstrated:
● Zotero (managing papers, citations, etc.)

● LaTeX and paper format templates

● BibTeX

Back to Crypto… Recap of last time

Miller-Rabin Primality Testing: There is an efficient randomized algorithm
for testing if large numbers are prime (with very low probability of error).
● So: There is an efficient algorithm for finding large random prime numbers

Euler’s totient function: (n) = number of integers from 1..n-1 that are
relatively prime to n.

Euler’s Theorem: For every a and n that are relatively prime (i.e., gcd(a,n)=1),
a (n) ≡ 1 (mod n) .

RSA Algorithm
Key Generation:

Pick two large primes p and q
Calculate n=p*q and (n)=(p-1)*(q-1)
Pick a random e such that gcd(e, (n))
Compute d = e-1 (mod (n)) [Use extended GCD algorithm!]
Public key is PU=(n,e) ; Private key is PR=(n,d)

Encryption of message M ∈ {0,..,n-1}:
E(PU,M) = Me mod n

Decryption of ciphertext C ∈ {0,..,n-1}:
D(PR,C) = Cd mod n

RSA Algorithm
Key Generation:

Pick two large primes p and q
Calculate n=p*q and (n)=(p-1)*(q-1)
Pick a random e such that gcd(e, (n))
Compute d = e-1 (mod (n)) [Use extended GCD algorithm!]
Public key is PU=(n,e) ; Private key is PR=(n,d)

Encryption of message M ∈ {0,..,n-1}:
E(PU,M) = Me mod n

Decryption of ciphertext C ∈ {0,..,n-1}:
D(PR,C) = Cd mod n

Correctness - easy when gcd(M,n)=1:

D(PR,E(PU,M)) = (Me)d mod n
 = Med mod n
 = Mk (n)+1 mod n
 = (M (n))k M mod n
 = M

Also works when gcd(M,n)≠1, but
slightly harder to show...

RSA Example

Simple example:
p = 73, q = 89
n = p*q = 73*89 = 6497

(n) = (p-1)*(q-1) = 72*88 = 6336
e = 5
d = 5069 [Note: 5*5069 = 25,345 = 4*6336 + 1]

Encrypting message M=1234:
12345 mod 6497 = 1881

Decrypting:
18815069 mod 6497 = 1234

Note: If time allows in class, more examples using Python!

Status of breaking RSA and factoring

Observation: If we could factor fast, we could break RSA
● How: Factor the public modulus n, compute (n), and compute d

So factoring is sufficient to break RSA - is it necessary?

Status of breaking RSA and factoring

Observation: If we could factor fast, we could break RSA
● How: Factor the public modulus n, compute (n), and compute d

So factoring is sufficient to break RSA - is it necessary?
● Answer: no one knows!
● This would be a great result if it could be proved…
● Note: Rabin’s PK encryption system is based on a similar concept,

and it has been shown that breaking it is equivalent to factoring
○ Rabin’s scheme isn’t used because it is very inefficient - bit-by-bit

What we know

Fast factoring ⇒ Break RSA

What we’d like

Break RSA ⇒ Fast factoring

Why? Look at logical contrapositive:

Can’t factor fast ⇒ Can’t break RSA

How fast can we factor?
Consider an algorithm with running time

With ɑ = 1: This is 2c�n -- pure exponential time
With ɑ = 0: This is 2c�lg(n) = nc -- pure polynomial time

Algorithm discovery for factoring has generally involved lowering ɑ
● ɑ = 1: Brute-force search for factors (exponential time)
● ɑ = ½: Quadratic Sieve (1981) - still the best for n<300 bits or so
● ɑ = ⅓: General Number Field Sieve (1990) - best for large numbers

But: Constants also matter (esp. the c in the exponent!)...
What are the real-world speeds and consequences?

Comparable Key Sizes
From NIST publication 800-57a

Issue: PK algorithms based on mathematical relationships, and can be broken
with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher keys needed to be
➔ How big do keys in a public key system need to be?

From NIST pub 800-57a:

