CSC 580 Cryptography and Computer Security

The RSA Algorithm and Key Size Issues (Section 9.2 and more)

March 15, 2018

Overview

Today:

- Overview/demo of research tools
- The RSA Algorithm key sizes and factoring

Next:

- Read Sections 2.8, 10.1, and 10.2
- Complete ungraded homework 6
- Remember to be working on graded homework 2 (due next Thurs)

First up... some demos of research tools

Tools being demonstrated:

- Zotero (managing papers, citations, etc.)
- LaTeX and paper format templates
- BibTeX

Back to Crypto... Recap of last time

<u>Miller-Rabin Primality Testing</u>: There is an efficient randomized algorithm for testing if large numbers are prime (with very low probability of error).

• So: There is an efficient algorithm for *finding* large random prime numbers

<u>Euler's totient function</u>: $\phi(n)$ = number of integers from 1..*n*-1 that are relatively prime to *n*.

<u>Euler's Theorem</u>: For every *a* and *n* that are relatively prime (i.e., gcd(a,n)=1), $a^{\phi(n)} \equiv 1 \pmod{n}$.

RSA Algorithm

Key Generation:

Pick two large primes *p* and *q* Calculate $n=p^*q$ and $\phi(n)=(p-1)^*(q-1)$ Pick a random *e* such that $gcd(e, \phi(n))$ Compute $d = e^{-1} \pmod{\phi(n)}$ [Use extended GCD algorithm!] Public key is PU=(n,e); Private key is PR=(n,d)

Encryption of message $M \in \{0,..,n-1\}$: E(*PU*,*M*) = $M^e \mod n$

```
Decryption of ciphertext C \in \{0,..,n-1\}:
D(PR,C) = C^d \mod n
```

RSA Algorithm

Key Generation:

Pick two large primes *p* and *q* Calculate $n=p^*q$ and $\phi(n)=(p-1)^*(q-1)$ Pick a random *e* such that $gcd(e, \phi(n))$ Compute $d = e^{-1} \pmod{\phi(n)}$ [Use extended GCD algorithm!] Public key is PU=(n,e); Private key is PR=(n,d)

	Correctness - easy when gcd(<i>M</i> , <i>n</i>)=1:
Encryption of message $M \in \{0,,n-1\}$:	$D(PR,E(PU,M)) = (M^e)^d \mod n$
E(<i>PU</i> , <i>M</i>) = <i>M</i> ^e mod <i>n</i>	$D(PR,E(PO,M)) = (M^{\circ})^{\circ} \mod n$ $= M^{ed} \mod n$
	$= M^{k\phi(n)+1} \mod n$
Decryption of ciphertext $C \in \{0,,n-1\}$:	$= (M^{\phi(n)})^k M \mod n$
$D(PR,C) = C^d \mod n$	= <i>M</i>
D(FK,C) = C mod H	Also works when $gcd(M,n) \neq 1$, but
	slightly harder to show

RSA Example

Simple example:

p = 73, q = 89
n = p*q = 73*89 = 6497

$$\phi(n) = (p-1)*(q-1) = 72*88 = 6336$$

e = 5
d = 5069 [Note: 5*5069 = 25,345 = 4*6336 + 1]

Encrypting message M=1234:

 $1234^5 \mod 6497 = 1881$

Decrypting:

 $1881^{5069} \mod 6497 = 1234$

Note: If time allows in class, more examples using Python!

Status of breaking RSA and factoring

Observation: If we could factor fast, we could break RSA

• How: Factor the public modulus n, compute $\phi(n)$, and compute d

So factoring is *sufficient* to break RSA - is it *necessary*?

Status of breaking RSA and factoring

Observation: If we could factor fast, we could break RSA

• How: Factor the public modulus n, compute $\phi(n)$, and compute d

So factoring is *sufficient* to break RSA - is it *necessary*?

- Answer: no one knows!
- This would be a great result if it could be proved...
- Note: Rabin's PK encryption system is based on a similar concept, and it has been shown that breaking it is equivalent to factoring
 - Rabin's scheme isn't used because it is very inefficient bit-by-bit

What we know

Fast factoring ⇒ Break RSA

<u>What we'd like</u>

Break RSA ⇒ Fast factoring

Why? Look at logical contrapositive:

Can't factor fast ⇒ Can't break RSA

How fast can we factor?

Consider an algorithm with running time $\Theta\left(2^{c \cdot n^{\alpha} \cdot (\lg n)^{1-\alpha}}\right)$

With a = 1: This is $2^{c \square n}$ -- pure exponential time With a = 0: This is $2^{c \square lg(n)} = n^c$ -- pure polynomial time

Algorithm discovery for factoring has generally involved lowering a

- a = 1: Brute-force search for factors (exponential time)
- $a = \frac{1}{2}$: Quadratic Sieve (1981) still the best for n<300 bits or so
- $a = \frac{1}{3}$: General Number Field Sieve (1990) best for large numbers

But: Constants also matter (esp. the c in the exponent!)...

What are the real-world speeds and consequences?

Comparable Key Sizes From NIST publication 800-57a

From NIST pub 800-57a:

Issue: PK algorithms based on mathematical relationships, and can be broken with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher keys needed to be

→ How big do keys in a public key system need to be?

Security Strength	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)
≤ 80	2TDEA ²¹	L = 1024 $N = 160$	<i>k</i> = 1024	<i>f</i> = 160-223
112	3TDEA	L = 2048 $N = 224$	<i>k</i> = 2048	f = 224-255
128	AES-128	L = 3072 N = 256	<i>k</i> = 3072	f = 256-383
192	AES-192	L = 7680 $N = 384$	<i>k</i> = 7680	f = 384-511
256	AES-256	L = 15360 N = 512	<i>k</i> = 15360	<i>f</i> = 512+

Table 2: Comparable strengths