CSC 580
 Cryptography and Computer Security

The RSA Algorithm and Key Size Issues
(Section 9.2 and more)

March 15, 2018

Overview

Today:

- Overview/demo of research tools
- The RSA Algorithm - key sizes and factoring

Next:

- Read Sections 2.8, 10.1, and 10.2
- Complete ungraded homework 6
- Remember to be working on graded homework 2 (due next Thurs)

First up... some demos of research tools

Tools being demonstrated:

- Zotero (managing papers, citations, etc.)
- LaTeX and paper format templates
- BibTeX

Back to Crypto... Recap of last time

Miller-Rabin Primality Testing: There is an efficient randomized algorithm for testing if large numbers are prime (with very low probability of error).

- So: There is an efficient algorithm for finding large random prime numbers

Euler's totient function: $\phi(n)=$ number of integers from 1..n-1 that are relatively prime to n.

Euler's Theorem: For every a and n that are relatively prime (i.e., $\operatorname{gcd}(a, n)=1$),

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

RSA Algorithm

Key Generation:
Pick two large primes p and q
Calculate $n=p^{*} q$ and $\phi(n)=(p-1)^{*}(q-1)$
Pick a random e such that $\operatorname{gcd}(e, \phi(n))$
Compute $d=e^{-1}(\bmod \phi(n))$ [Use extended GCD algorithm!]
Public key is $P U=(n, e)$; Private key is $P R=(n, d)$

Encryption of message $M \in\{0, . ., n-1\}$:
$E(P U, M)=M^{e} \bmod n$

Decryption of ciphertext $C \in\{0, . ., n-1\}$:
$D(P R, C)=C^{d} \bmod n$

RSA Algorithm

Key Generation:
Pick two large primes p and q
Calculate $n=p^{*} q$ and $\phi(n)=(p-1)^{*}(q-1)$
Pick a random e such that $\operatorname{gcd}(e, \phi(n))$
Compute $d=e^{-1}(\bmod \phi(n))$ [Use extended GCD algorithm!]
Public key is $P U=(n, e)$; Private key is $P R=(n, d)$

Encryption of message $M \in\{0, . ., n-1\}$: $\mathrm{E}(P U, M)=M^{e} \bmod n$

Decryption of ciphertext $C \in\{0, . ., n-1\}$: $D(P R, C)=C^{d} \bmod n$

Correctness - easy when $\operatorname{gcd}(M, n)=1$:
$\mathrm{D}(P R, \mathrm{E}(P U, M))=\left(M^{e}\right)^{d} \bmod n$
$=M^{e d} \bmod n$
$=M^{k \phi(n)+1} \bmod n$
$=\left(M^{\phi(n)}\right)^{k} M \bmod n$

$$
=M
$$

Also works when $\operatorname{gcd}(M, n) \neq 1$, but slightly harder to show...

RSA Example

Simple example:

$$
\begin{aligned}
& p=73, q=89 \\
& n=p^{*} q=73^{*} 89=6497 \\
& \phi(n)=(p-1)^{*}(q-1)=72^{*} 88=6336 \\
& e=5 \\
& d=5069 \quad\left[\text { Note: } 5^{*} 5069=25,345=4^{*} 6336+1\right]
\end{aligned}
$$

Encrypting message $\mathrm{M}=1234$:
$1234^{5} \bmod 6497=1881$
Decrypting:
$1881^{5069} \bmod 6497=1234$
Note: If time allows in class, more examples using Python!

Status of breaking RSA and factoring

Observation: If we could factor fast, we could break RSA

- How: Factor the public modulus n , compute $\phi(n)$, and compute d

So factoring is sufficient to break RSA - is it necessary?

Status of breaking RSA and factoring

Observation: If we could factor fast, we could break RSA

- How: Factor the public modulus n , compute $\phi(n)$, and compute d

So factoring is sufficient to break RSA - is it necessary?

- Answer: no one knows!
- This would be a great result if it could be proved...
- Note: Rabin's PK encryption system is based on a similar concept, and it has been shown that breaking it is equivalent to factoring
- Rabin's scheme isn't used because it is very inefficient - bit-by-bit

What we'd like
 Break RSA \Rightarrow Fast factoring

Why? Look at logical contrapositive:
Can't factor fast \Rightarrow Can't break RSA

How fast can we factor?

Consider an algorithm with running time $\Theta\left(2^{c \cdot n^{\alpha} \cdot(\lg n)^{1-\alpha}}\right)$
With $a=1$: This is $2^{\mathrm{c} \square \mathrm{n}}--$ pure exponential time
With $a=0$: This is $2^{c \square I g(n)}=n^{c} \quad--$ pure polynomial time

Algorithm discovery for factoring has generally involved lowering a

- $a=1$: Brute-force search for factors (exponential time)
- $a=1 / 2$: Quadratic Sieve (1981) - still the best for $n<300$ bits or so
- $a=1 / 3$: General Number Field Sieve (1990) - best for large numbers

But: Constants also matter (esp. the c in the exponent!)... What are the real-world speeds and consequences?

Comparable Key Sizes From NIST publication 800-57a

Issue: PK algorithms based on mathematical relationships, and can be broken with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher keys needed to be \rightarrow How big do keys in a public key system need to be?

Table 2: Comparable strengths
From NIST pub 800-57a:

Security Strength	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)
≤ 80	2 TDEA 21	$L=1024$ $N=160$	$k=1024$	$f=160-223$
112	3 TDEA	$L=2048$ $N=224$	$k=2048$	$f=224-255$
128	AES-128	$L=3072$ $N=256$	$k=3072$	$f=256-383$
192	AES-192	$L=7680$ $N=384$	$k=7680$	$f=384-511$
256	AES-256	$L=15360$ $N=512$	$k=15360$	$f=512+$

