CSC 580 Cryptography and Computer Security

Discrete Logarithms, Diffie-Hellman, and Elliptic Curves (Sections 2.8, 10.1-10.4)

March 20, 2018

Overview

Today:

- Discuss homework 6 solutions
- Math needed for discrete-log based cryptography
- Diffie-Hellman and ElGamal
- Elliptic Curves idea and translation of Diffie-Hellman to ECC

Next:

- Quiz on Thursday (based on HW6 & formal models)
- Graded Homework 2 due on Thursday!
- Read Chapter 11 (skip SHA-512 logic and SHA3 iteration function)
- Project project due in two weeks (April 3) don't forget this!

The Discrete Log Problem

For every prime number p, there exists a primitive root (or "generator") g such that

 $g^1, g^2, g^3, g^4, \dots, g^{p-2}, g^{p-1}$ (all taken mod p)

are all distinct values (so a permutation of 1, 2, 3, ..., p-1).

Example: 3 is a primitive root of 17, with powers:

3[/] mod

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1

 $f_{g,p}(i) = g^i \mod p$ is a bijective mapping on $\{1, ..., p-1\}$

g and p are global public parameters

 $f_{g,p}(i)$ is easy to compute (modular powering algorithm) Inverse, written $dlog_{g,p}(x) = f_{g,p}^{-1}(x)$, is believed to be difficult to compute

Diffie-Hellman Key Assume g and p are known	y Exchange (DHE) n, public parameters
Alice	Bob
$a \leftarrow random value from \{1,, p-1\}$ $A \leftarrow g^a \mod p$	$b \leftarrow \text{random value from } \{1,, p-1\}$ $B \leftarrow g^b \mod p$
Send A to Bob	`
←	Send B to Alice
$S_a \leftarrow B^a \mod p$	$S_b \leftarrow A^b \mod p$
In the end, Alice's secret (S_a) is	the same as Bob's secret (S_b) :
$S_a = B^a = g^{ba}$	$a^{a} = g^{ab} = A^{b} = S_{b}$
Eavesdropper knows A and B, the discrete logarithm problem!	but to get a or b requires solving

ElGamal Encryption

The idea is simple:

Define "long term key" for one side of Diffie-Hellman

Key Generation (Bob):

- $b \leftarrow \text{random value from } \{1, ..., p-1\}$ $B \leftarrow g^b \mod p$ (B,g,p) is public key (i.e., encryption key) b is private key

- For Alice to send a message to Bob:
 Get (B,g,p) from Bob
 Pick k ← random value from {1, ..., p-1}
 For message M ∈ {1, ..., p-1}, ciphertext (C₁,C₂) = (g^k mod p, M·B^k mod p)

For Bob to decrypt ciphertext (C_1, C_2) :

- $K \leftarrow C_p^b \mod p$ // Same as B^k above $M \leftarrow C_2^c K^{-1} \mod p$ // Same as original plaintext (see DHE for similarity)

EIGamal Encryption									
Ke Big Warning!!!!									
 In ElGamal, only one side can be a long-term key!!! 									
• Serious problems if sender re-uses <i>k</i> !									
Pick $k \leftarrow random value from \{1,, p-1\}$ For message $M \in \{1,, p-1\}$, ciphertext $(C_1, C_2) = (g^k \mod p, M \cdot B^k \mod p)$									
For Bob to decrypt ciphertext (C_1, C_2): • $K \leftarrow C_1^{\ b} \mod p$ // Same as B^k above • $M \leftarrow C_2 \cdot K^{-1} \mod p$ // Same as original plaintext (see DHE for similarity)									

Abstracting the Problem

There are many sets over which we can define powering.

Example: Can look at powers of n×n matrices (A², A³, etc.)

Any finite set S with an element g such that $f_q: S \to S$ is a bijection (where $f_g(x) = g^x$ for all $x \in S$) is called a <u>cyclic group</u>

• Very cool math here - see Chapter 5 for more info (optional)

If f_g is easy to compute and f_g^{-1} is difficult, then can do Diffie-Hellman

"Elliptic Curves" are a mathematical object with this property

In fact: f_q^{-1} seems to be harder to compute for Elliptic Curves than Z_p

 Consequence: Elliptic Curves can use shorter numbers/keys than standard Diffie-Hellman - so faster and less communication required!

Elliptic	Curv	ves over Finite Fields						
General form	nula fo	r "Elliptic Curves over Z _p " (p is prim	e):					
E _p (a,b) is t	the set of	of points (x,y) satisfying $y^2 \equiv x^3 + ax + b \pmod{1}$	<i>p</i>)					
Technic	al requi	rement for a and b: $4a^3 + 27b^2 \neq 0 \pmod{p}$						
Points in $E_5(2,1)$ ($y^2 \equiv x^3 + 2x + 1 \pmod{5}$)								
Squares in Z_5 $0^2 = 0$	x = 0:	$y^2 = x^3+2x+1 \mod 5 = 1$ y = 1 or 4 (see table on left)	Points					
$1^2 = 1$ $2^2 = 4$	x = 1:	$y^2 = x^3+2x+1 \mod 5 = 1+2+1 = 4$ y = 2 or 3	(0,1) (0,4)					
$3^2 = 4$ $4^2 = 1$	x = 2:	$y^2 = x^3 + 2x + 1 \mod 5 = 8 + 4 + 1 = 3 \pmod{n}$	(1,2) (1,3)					
	x = 3:	y ² = x ³ +2x+1 mod 5 = 27+6+1 = 4 y = 2 or 3	(3,2) (3,3)					
	x = 4:	$y^2 = x^3 + 2x + 1 \mod 5 = 64 + 8 + 1 = 3 \pmod{n}$	L					

Elliptic Curves over Finite Fields

General formula for "Elliptic Curves over Z_p " (*p* is prime):

 $E_p(a,b)$ is the set of points (x,y) satisfying $y^2 \equiv x^3 + ax + b \;({\rm mod}\; p)$

Technical requirement for *a* and *b*: $4a^3 + 27b^2 \neq 0 \pmod{p}$

Important points

- Can add points as before (no sensible picture, however)
- For a point P, can calculate
 - 2*P = P+P
 3*P = P+P+P
 - 4*P = P+P+P
 - + F = F + F + F +

(eventually repeats \rightarrow P generates a cyclic group)

- Notation is multiplying rather than powering, but can do Diffie-Hellman!
- Important: Discrete logs seem to be harder to compute for Elliptic Curves than Z_p
 Consequence: Elliptic Curves can use shorter numbers/keys than standard Diffie-Hellman - so faster and less communication required!

Revisiting Key Sizes From NIST publication 800-57a

<u>Issue</u>: PK algorithms based on mathematical relationships, and can be broken with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher keys needed to be \rightarrow How big do keys in a public key system need to be?

	Table 2: Comparable strengths							
From NIST pub 800-57a:	Security Strength	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)			
	≤ 80	2TDEA ²¹	L = 1024 N = 160	<i>k</i> = 1024	f = 160-223			
	112	3TDEA	L = 2048 N = 224	k = 2048	f = 224-255			
	128	AES-128	L = 3072 N = 256	k = 3072	f = 256-383			
	192	AES-192	L = 7680 N = 384	k = 7680	f=384-511			
	256	AES-256	L = 15360 N = 512	k = 15360	f=512+			