CSC 580 Cryptography and Computer Security

Discrete Logarithms, Diffie-Hellman, and Elliptic Curves (Sections 2.8, 10.1-10.4)

March 20, 2018

Overview

Today:

- Discuss homework 6 solutions
- Math needed for discrete-log based cryptography
- Diffie-Hellman and EIGamal
- Elliptic Curves - idea and translation of Diffie-Hellman to ECC

Next:

- Quiz on Thursday (based on HW6 \& formal models)
- Graded Homework 2 due on Thursday!
- Read Chapter 11 (skip SHA-512 logic and SHA3 iteration function)
- Project project due in two weeks (April 3) - don't forget this!

The Discrete Log Problem

For every prime number p, there exists a primitive root (or "generator") g such that
$g^{1}, g^{2}, g^{3}, g^{4}, \ldots, g^{p-2}, g^{p-1} \quad($ all taken $\bmod p)$
are all distinct values (so a permutation of $1,2,3, \ldots, p-1$).
Example: 3 is a primitive root of 17 , with powers:

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$3^{i} \bmod 17$	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1

$f_{g, p}(i)=g^{i} \bmod p$ is a bijective mapping on $\{1, \ldots, p-1\}$
g and p are global public parameters
$f_{g, p}(i)$ is easy to compute (modular powering algorithm)
Inverse, written $\operatorname{dlog}_{g, p}(x)=f_{\text {g.p }}^{-1}(x)$, is believed to be difficult to compute

Diffie-Hellman Key Exchange (DHE)
Assume g and p are known, public parameters

ElGamal Encryption

The idea is simple:
Define "long term key" for one side of Diffie-Hellman
Key Generation (Bob):

- $b \leftarrow$ random value from $\{1, \ldots, p-1\}$
- $B \leftarrow g^{b} \bmod p$
- (B, g, p) is public key (i.e., encryption key) - b is private key

For Alice to send a message to Bob:

- Get (B, g, p) from Bob
- Pick $k \leftarrow$ random value from $\{1, \ldots, p-1\}$
- For message $M \in\{1, \ldots, p-1\}$, ciphertext $\left(C_{1}, C_{2}\right)=\left(g^{k} \bmod p, M \cdot B^{k} \bmod p\right)$

For Bob to decrypt ciphertext (C_{1}, C_{2}):

- $K \leftarrow C_{1}{ }^{b} \bmod p$
// Same as B^{k} above
- $M \leftarrow C_{2} \cdot K^{-1} \bmod p \quad / /$ Same as original plaintext (see DHE for similarity)

EIGamal Encryption

Big Warning!!!!

In EIGamal, only one side can be a long-term key!!!
Serious problems if sender re-uses k !

- Pick $k \leftarrow$ random value from $\{1, \ldots, p-1\}$
- For message $M \in\{1, \ldots, p-1\}$, ciphertext $\left(C_{1}, C_{2}\right)=\left(g^{k} \bmod p, M \cdot B^{k} \bmod p\right)$

For Bob to decrypt ciphertext $\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$:

- $K \leftarrow C_{1}{ }^{b} \bmod p$
// Same as B^{k} above
- $M \leftarrow C_{2} \cdot K^{-1} \bmod p \quad / /$ Same as original plaintext (see DHE for similarity)

Abstracting the Problem

There are many sets over which we can define powering.
Example: Can look at powers of $n \times n$ matrices (A^{2}, A^{3}, etc.)
Any finite set S with an element g such that $f_{g}: S \rightarrow S$ is a bijection (where $f_{g}(x)=g^{x}$ for all $x \in S$) is called a cyclic group

- Very cool math here - see Chapter 5 for more info (optional)

If f_{g} is easy to compute and f_{g}^{-1} is difficult, then can do Diffie-Hellman
"Elliptic Curves" are a mathematical object with this property
In fact: f_{g}^{-1} seems to be harder to compute for Elliptic Curves than \boldsymbol{Z}_{p}

- Consequence: Elliptic Curves can use shorter numbers/keys than standard Diffie-Hellman - so faster and less communication required!

Elliptic Curves

The basic idea...

Elliptic Curves over Finite Fields

General formula for "Elliptic Curves over Z_{p} " (p is prime): $E_{p}(a, b)$ is the set of points (x, y) satisfying $y^{2} \equiv x^{3}+a x+b(\bmod p)$

Technical requirement for a and $b: 4 a^{3}+27 b^{2} \equiv 0(\bmod p)$

	Points in $E_{5}(2,1) \quad\left(y^{2} \equiv x^{3}+2 x+1(\bmod 5)\right)$		Points
Squares in Z_{5}	$\mathrm{x}=0$:	$\begin{aligned} & y^{2}=x^{3}+2 x+1 \bmod 5=1 \\ & y=1 \text { or } 4 \text { (see table on left) } \end{aligned}$	
$1^{2}=1$	$x=1$:	$y^{2}=x^{3}+2 x+1 \bmod 5=1+2+1=4$	(0,1)
$2^{2}=4$		$y=2$ or 3	$(0,4)$
$3^{2}=4$	$x=2$:	$y^{2}=x^{3}+2 x+1 \bmod 5=8+4+1=3$ (no sol'n)	(1,2)
$4^{2}=1$			$(1,3)$ $(3,2)$
	$x=3$:	$\begin{aligned} & y^{2}=x^{3}+2 x+1 \bmod 5=27+6+1=4 \\ & y=2 \text { or } 3 \end{aligned}$	$(1,2)$ $(3,3)$
	$x=4$:	$y^{2}=x^{3}+2 x+1 \bmod 5=64+8+1=3($ no sol'n $)$	

Elliptic Curves over Finite Fields

General formula for "Elliptic Curves over Z_{p} " (p is prime): $E_{p}(a, b)$ is the set of points (x, y) satisfying $y^{2} \equiv x^{3}+a x+b(\bmod p)$

Technical requirement for a and $b: 4 a^{3}+27 b^{2} \equiv 0(\bmod p)$

Important points

- Can add points as before (no sensible picture, however)
- For a point P, can calculate
- 2* $\mathrm{P}=\mathrm{P}+\mathrm{P}$
$3^{*} P=P+P+P$
- $4^{*} \mathrm{P}=\mathrm{P}+\mathrm{P}+\mathrm{P}+\mathrm{P}$
(eventually repeats $\rightarrow \mathrm{P}$ generates a cyclic group)
- Notation is multiplying rather than powering, but can do Diffie-Hellman!

Important: Discrete logs seem to be harder to compute for Elliptic Curves than \boldsymbol{Z}_{ρ} - Consequence: Elliptic Curves can use shorter numbers/keys than standard Diffie-Hellman - so faster and less communication required!

Revisiting Key Sizes
 From NIST publication 800-57a

Issue: PK algorithms based on mathematical relationships, and can be broken with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher keys needed to be \rightarrow How big do keys in a public key system need to be?

Table 2: Comparable strengths						
From NIST pub 800-57a:	Security Strength	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)	
	≤ 80	2 TDEA 21	$L=1024$ $N=160$	$k=1024$	$f=160-223$	
112	3 TDEA	$L=2048$ $N=224$	$k=2048$	$f=224-255$		
	128	AES-128	$L=3072$ $N=256$	$k=3072$	$f=256-383$	
192	AES-192	$L=7680$ $N=384$	$k=7680$	$f=384-511$		
256	AES-256	$L=15360$ $N=512$	$k=15360$	$f=512+$		

