CSC 580 Cryptography and Computer Security

Discrete Logarithms, Diffie-Hellman, and Elliptic Curves (Sections 2.8, 10.1-10.4)

March 20, 2018

Overview

Today:

- Discuss homework 6 solutions
- Math needed for discrete-log based cryptography
- Diffie-Hellman and ElGamal
- Elliptic Curves idea and translation of Diffie-Hellman to ECC

Next:

- Quiz on Thursday (based on HW6 & formal models)
- Graded Homework 2 due on Thursday!
- Read Chapter 11 (skip SHA-512 logic and SHA3 iteration function)
- Project project due in two weeks (April 3) don't forget this!

The Discrete Log Problem

For every prime number p, there exists a primitive root (or "generator") g such that

$$g^1, g^2, g^3, g^4, ..., g^{p-2}, g^{p-1}$$
 (all taken mod p)

are all distinct values (so a permutation of 1, 2, 3, ..., p-1).

Example: 3 is a primitive root of 17, with powers:

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
3 ⁱ mod 17	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1

 $f_{g,p}(i) = g^i \mod p$ is a bijective mapping on $\{1,..., p-1\}$

g and p are global public parameters

 $f_{q,p}(i)$ is easy to compute (modular powering algorithm)

Inverse, written $dlog_{g,p}(x) = f_{g,p}^{-1}(x)$, is believed to be difficult to compute

Diffie-Hellman Key Exchange (DHE)

Assume g and p are known, public parameters

<u>Alice</u>

 $a \leftarrow \text{random value from } \{1, ..., p-1\}$

 $A \leftarrow g^a \mod p$

<u>Bob</u>

 $b \leftarrow \text{random value from } \{1, ..., p-1\}$

 $B \leftarrow g^b \mod p$

Send A to Bob

Send B to Alice

 $S_a \leftarrow B^a \mod p$

 $S_b \leftarrow A^b \mod p$

In the end, Alice's secret (S_a) is the same as Bob's secret (S_b) :

$$S_a = B^a = g^{ba} = g^{ab} = A^b = S_b$$

Eavesdropper knows A and B, but to get a or b requires solving the discrete logarithm problem!

EIGamal Encryption

The idea is simple:

Define "long term key" for one side of Diffie-Hellman

Key Generation (Bob):

- *b* ← random value from {1, ..., *p*-1}
- $B \leftarrow g^b \mod p$
- (B,g,p) is public key (i.e., encryption key) b is private key

For Alice to send a message to Bob:

- Get (B,g,p) from Bob
- Pick *k* ← random value from {1, ..., *p*-1}
- For message $M \in \{1, ..., p-1\}$, ciphertext $(C_1, C_2) = (g^k \mod p, M \cdot B^k \mod p)$

For Bob to decrypt ciphertext (C_1, C_2) :

- $K \leftarrow C_1^b \mod p$ // Same as B^k above
- $M \leftarrow C_2 \cdot K^{-1} \mod p$ // Same as original plaintext (see DHE for similarity)

EIGamal Encryption

The idea is simple:

Big Warning!!!!

In ElGamal, only one side can be a long-term key!!!

Serious problems if sender re-uses *k*!

- Pick k ← random value from {1, ..., p-1}
- For message $M \in \{1, ..., p-1\}$, ciphertext $(C_1, C_2) = (g^k \mod p, M \cdot B^k \mod p)$

For Bob to decrypt ciphertext (C_1, C_2) :

- $K \leftarrow C_1^b \mod p$ // Same as B^k above
- $M \leftarrow C_2 \cdot K^{-1} \mod p$ // Same as original plaintext (see DHE for similarity)

Abstracting the Problem

There are many sets over which we can define powering.

Example: Can look at powers of $n \times n$ matrices (A^2 , A^3 , etc.)

Any finite set S with an element g such that $f_g: S \to S$ is a bijection (where $f_g(x) = g^x$ for all $x \in S$) is called a <u>cyclic group</u>

Very cool math here - see Chapter 5 for more info (optional)

If f_g is easy to compute and f_g^{-1} is difficult, then can do Diffie-Hellman

"Elliptic Curves" are a mathematical object with this property

In fact: f_g^{-1} seems to be harder to compute for Elliptic Curves than \mathbf{Z}_p

 Consequence: Elliptic Curves can use shorter numbers/keys than standard Diffie-Hellman - so faster and less communication required!

Elliptic Curves

The basic idea...

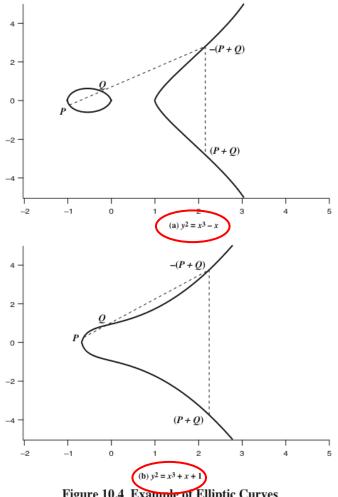


Figure 10.4 Example of Elliptic Curves

Key ideas:

- Formula with x and y defines a set of points (x,y).
- Formula is quadratic in y, cubic in x
- Since quadratic in, symmetric around x axis

Define "addition of two points":

- Draw a line through the two points
- Where else does it hit curve
 - 3 places because cubic in x
- Reflect around x axis

Elliptic Curves over Finite Fields

General formula for "Elliptic Curves over Z_n " (p is prime):

 $E_p(a,b)$ is the set of points (x,y) satisfying $y^2 \equiv x^3 + ax + b \pmod{p}$

Technical requirement for a and b: $4a^3 + 27b^2 \neq 0 \pmod{p}$

$$0^2 = 0$$

$$1^2 = 1$$

$$2^2 = 4$$

$$3^2 = 4$$

$$4^2 = 1$$

Points in $E_5(2,1)$ ($y^2 \equiv x^3 + 2x + 1 \pmod{5}$)

Squares in
$$Z_5 | x = 0$$
: $y^2 = x^3 + 2x + 1 \mod 5 = 1$

$$| x = 1$$
: $y^2 = x^3 + 2x + 1 \mod 5 = 1 + 2 + 1 = 4$

$$y = 2 \text{ or } 3$$

$$x = 2$$
: $y^2 = x^3 + 2x + 1 \mod 5 = 8 + 4 + 1 = 3 \text{ (no sol'n)}$

$$x = 3$$
: $y^2 = x^3 + 2x + 1 \mod 5 = 27 + 6 + 1 = 4$

$$y = 2 \text{ or } 3$$

$$x = 4$$
: $y^2 = x^3 + 2x + 1 \mod 5 = 64 + 8 + 1 = 3 (no sol'n)$

Points

(0,1)

(0,4)

(1,2)

(1,3)

(3,2)

(3,3)

Elliptic Curves over Finite Fields

General formula for "Elliptic Curves over Z_p " (p is prime):

```
E_p(a,b) is the set of points (x,y) satisfying y^2 \equiv x^3 + ax + b \pmod{p}
```

Technical requirement for a and b: $4a^3 + 27b^2 \neq 0 \pmod{p}$

Important points

- Can add points as before (no sensible picture, however)
- For a point P, can calculate
 - 2*P = P+P
 - \circ 3*P = P+P+P
 - \circ 4*P = P+P+P+P
 - 0 ...

(eventually repeats → P generates a cyclic group)

Notation is multiplying rather than powering, but can do Diffie-Hellman!

Important: Discrete logs seem to be harder to compute for Elliptic Curves than \mathbf{Z}_{p}

 Consequence: Elliptic Curves can use shorter numbers/keys than standard Diffie-Hellman - so faster and less communication required!

Revisiting Key Sizes

From NIST publication 800-57a

<u>Issue</u>: PK algorithms based on mathematical relationships, and can be broken with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher keys needed to be

→ How big do keys in a public key system need to be?

Table 2: Comparable strengths

From NIST pub 800-57a:

Security Strength	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)		
≤ 80	2TDEA ²¹	L = 1024 $N = 160$	k = 1024	f = 160-223		
112	3TDEA	L = 2048 $N = 224$	k = 2048	f = 224-255		
128	AES-128	L = 3072 $N = 256$	k = 3072	f = 256-383		
192	AES-192	L = 7680 $N = 384$	k = 7680	f = 384-511		
256	AES-256	L = 15360 $N = 512$	k = 15360	f = 512+		