
CSC 580
Cryptography and Computer Security

Cryptographic Hash Functions
(Chapter 11)

March 22 and 27, 2018

Overview

Today:
● Quiz (based on HW 6)

● Graded HW 2 due

● Grad/honors students: Project topic selection due

● Discuss cryptographic hash functions (today and next Tuesday)

Next:
● Complete homework 7 (due Tuesday, March 27)

● Read Sections 12.1-12.6 before next Thursday

Hash Function Basics and Terminology

General Definition: A hash function maps a large domain into a small,
fixed-size range. Domain often generalized to all binary strings.

H: {0,1}* → R
Fixed size range

Use in data structures: R is set of hash table indices.

Important properties:
● Efficient to compute
● Uniform distribution (“apparently random”)

If H(x)=h, then we say “x is a preimage of h”

If x ≠ y, but H(x) = H(y), then the pair (x,y) is a collision

Question: Do all hash functions have collisions?

Cryptographic Hash Functions
Cryptographic hash functions map to fixed-length bit-vectors,
sometimes called message digests.

H: {0,1}* → {0,1}n

For cryptographic applications, need one or more of these properties:
● Preimage resistance: Given h, it’s infeasible to find x such that H(x)=h

○ Also called the “one-way property”

● Second preimage resistance: Given x, it’s infeasible to find y ≠ x such
that H(x)=H(y)
○ Also called “weak collision resistance”

● Collision resistance: It’s infeasible to find any two x and y such that x ≠ y
and H(x)=H(y)
○ Also called “strong collision resistance”

The SHA Family of Algorithms
SHA is the “Standard Hash Algorithm”

Table 11.3 from the textbook:

Algorithm Message Size Block Size Word Size Message
Digest Size

SHA-1 < 264 512 32 160

SHA-224 < 264 512 32 224

SHA-256 < 264 512 32 256

SHA-384 < 2128 1024 64 384

SHA-512 < 2128 1024 64 512

SHA-512/224 < 2128 1024 64 224

SHA-512/256 < 2128 1024 64 256

Note: MD5 is an older algorithm with a 128-bit digest - don’t use MD5 or SHA-1.

Thinking about Collisions
If hashing b-bit inputs to n-bit digests, how many preimages per digest?
● Worst case (“at least c preimages for some digest…”)?
● On average?

Thinking about Collisions
If hashing b-bit inputs to n-bit digests, how many preimages per digest?
● Worst case (“at least c preimages for some digest…”)?
● On average?

For worst case:

If there are m items to be put into n bins, then one bin must contain at least
⌈m/n⌉ items (generalization of the pigeonhole principle).

2b preimages “placed in” 2n preimage bins
➔ One digest must have at least ⌈2b/2n⌉ = 2b-n preimages

Thinking about Collisions
If hashing b-bit inputs to n-bit digests, how many preimages per digest?
● Worst case (“at least c preimages for some digest…”)?
● On average?

For average case:

Thinking about Collisions
Some real numbers

Using SHA-1 to hash 256-bit (32-byte) inputs:
➔ A digest has on average 2256-160 = 296 different preimages

Bottom line: Lots and lots and lots and lots of collisions!

Looking for 296 needles in a size 2256 haystack still is hard...

MD5 was introduced in 1992
● Not a single collision found until 2004
● Now finding collisions in MD5 is fairly routine

SHA-1 was introduced in 1995
● Not a single collision found until… Feb 23, 2017
● Recommendations to not use since 2010
● Don’t use any more!

Brute Force Attacks
On Preimage and Second Preimage Resistance

Brute force attack to find a preimage:

find-preimage(h) // h is n bits
repeat

x ← random input
until H(x) = h

If H is uniformly distributed: prob 1/2n of finding preimage each time

This is a Bernoulli trial with success probability 1/2n

➔ Repeat until success gives a geometric distribution
➔ Expected number of trials is 2n

Question: What about a brute force attack to find a second preimage?

Brute Force Attacks
On Preimage and Second Preimage Resistance

Brute force attack to find a preimage:

find-preimage(h) // h is n bits
repeat

x ← random input
until H(x) = h

If H is uniformly distributed: prob 1/2n of finding preimage each time

This is a Bernoulli trial with success probability 1/2n

➔ Repeat until success gives a geometric distribution
➔ Expected number of trials is 2n

Question: What about a brute force attack to find a second preimage?

Answer: Same analysis… expected number of test hashes is 2n

Brute Force Attacks
On Collision Resistance

Free to match up any two preimages for a collision, so:

S ← {}
while true:

x ← random input
if a pair (y,H(x)) is in S with y ≠ x then

return (x,y)
Add (x,H(x)) to S

Looking for any duplicate pair is the “Birthday Problem”
➔ Picking randomly from m items
➔ Expect a duplicate after ≈ √m selections
➔ For n-bit hash function, collision after ≈ 2n/2 random tests

Question: Given what you know about feasible/borderline/safe times for
attacks, what digest size do you need to be safe against brute force against
each property?

Attacks via Cryptanalysis
Idea: Use structure of hash function - don’t just guess randomly!

Success of a cryptanalytic attack is measured by how much faster it is
than brute force.

Good summary on Wikipedia “Hash function security summary” page:

Preimage Resistance Collision Resistance

Algorithm Best Attack Brute Force Best Attack Brute Force

MD5 2123.4 2128 218 264

SHA-1 No attack 2160 263.1 280

SHA-256 No attack 2256 No attack 2128

“No attack” means no attack is known that substantially improves upon brute force for
the full-round version of the hash function.

Application 1: Password Storage
Problem: Need to store passwords in a database for checking logins

Goal: Passwords are checkable, but can’t be stolen if DB compromised

Idea: Don’t store password - store H(password)

What property of cryptographic hash functions must be satisfied?

Preimage resistance?

Second preimage resistance?

Collision resistance?

Application 1: Password Storage
Problem: Need to store passwords in a database for checking logins

Goal: Passwords are checkable, but can’t be stolen if DB compromised

Idea: Don’t store password - store H(password)

What property of cryptographic hash functions must be satisfied?

Preimage resistance? Yes

Second preimage resistance? No

Collision resistance? No

Application 1: Password Storage
Additional issues with password storage:

Issue 1: Would be easy to make a dictionary of hashes of popular passwords.

Solution: Add “salt” - random values prepended to password before hashing
● Like an IV - must be stored with hash
● If set of salts is 1015 or larger, destroys possibility of dictionaries - see why?

Issue 2: Given salt and hash, can brute force password (hash fns are fast!)

Solution: Purposely slow down hash function by iterating
● Compute H(H(H(H(...H(salt+password)...))))
● Using SHA256, can hash around 10,000,000 passwords/second
● Iterate 1,000,000 times to slow down to 0.1 seconds per test

Question 1: How long to test 1,000,000 most common passwords with SHA256?

Question 2: What about with iterated SHA256?

Application 2: Detecting File Tampering
Problem: Detect if a file has been modified without a copy of original

Goal: Can check if file is the original from a “fingerprint”

Idea: Store H(file) as fingerprint - for any file, SHA256(file) just 32 bytes

What property of cryptographic hash functions must be satisfied?

Preimage resistance?

Second preimage resistance?

Collision resistance?

Application 2: Detecting File Tampering
Problem: Detect if a file has been modified without a copy of original

Goal: Can check if file is the original from a “fingerprint”

Idea: Store H(file) as fingerprint - for any file, SHA256(file) just 32 bytes

What property of cryptographic hash functions must be satisfied?

Preimage resistance? No

Second preimage resistance? Yes

Collision resistance? No

Practical note:

Can’t store hashes with files
without additional protections!

Application 3: Verifying a message
Problem: I give you a contract, you verify what you agreed to with
fingerprint of contract.

Example: Bank calls and asks “Did you agree to fingerprint xybqasd?”

Goal: I can’t trick you into verifying a different contract than you saw

What property of cryptographic hash functions must be satisfied?

Preimage resistance?

Second preimage resistance?

Collision resistance?

Application 3: Verifying a message
Problem: I give you a contract, you verify what you agreed to with
fingerprint of contract.

Example: Bank calls and asks “Did you agree to fingerprint xybqasd?”

Goal: I can’t trick you into verifying a different contract than you saw

What property of cryptographic hash functions must be satisfied?

Preimage resistance? No

Second preimage resistance? Yes

Collision resistance? Yes

Practical note:

Seems esoteric, but this is precisely
what happened when an MD5-based
certification authority was
compromised in 2008

Relation Between Different Properties

Some basic questions
● Does a function with collision resistance have second preimage

resistance?
● Does a function with second preimage resistance have preimage

resistance?
● Can you construct a function with preimage resistance but not

collision resistance?

These questions will be explored in your next homework!

A sampling of other applications
Hash functions have been used for:
● Fast, secure pseudorandom number generation
● Disk deduplication

○ Similar: content-addressable storage as in Dropbox
● Forensic analysis (hashes of known files)
● Commitment protocols (commit to a value and reveal later)

A new(-ish) application with a different property - proof of work
● Partial preimage: A preimage in which only part of the digest bits match

○ Example: Find SHA1 preimage in which first 40 bits of hash are 0
○ Should not be able to do this faster than 240 tests on average
○ Smaller match requirement makes problem tractable - still hard though!

● Problem: Find x such that H(x || message) starts with b 0-bits
○ Invest time in finding x - changing message requires similar time
○ Link to future messages - changing a past message now very expensive
○ This is the key concept behind Bitcoin mining and blockchain integrity

Classical hash function construction

Merkle-Damgard construction
Used in MD5, SHA1, SHA256, SHA512, ...

b bits
(block)

s bits
(state)

s bits
(state)

f

Compression Function

Function b s

SHA1 512 160

SHA256 512 256

SHA512 1024 512

Classical hash function construction

Repeating compression function for long inputs

f f f f OutputInitial State

Input given in blocks of b-bits...

Notice that internal state is completely given in output if you stop early - this
causes a problem with some later constructions, such as creating message
authentication codes (MACs).

SHA-3

SHA-3 was selection process similar to that used for AES
● Competition announced/started in 2006
● Context: Attacks had been made on MD4, SHA-0, and MD5, as

well as on general structure - try to avoid “all designs alike”
○ From the competition announcement: “NIST also desires that the

SHA-3 hash functions will be designed so that a possibly successful
attack on the SHA-2 hash functions is unlikely to be applicable to
SHA-3.”

● Selection after rounds of proposal/evaluate/narrow rounds
○ 51 submissions!
○ 14 hash functions selected for round 2 in 2009
○ 5 finalists selected in 2010
○ Winner was named Keccak - announced in 2012

■ Designed by Guido Bertoni, Joan Daemen, and Michaël Peeters, and
Gilles Van Assche Recognize this name?

SHA-3
Based on a “sponge function” (not Merkle-Damgard):

Input is “absorbed” into the sponge - output is “squeezed out”

Input Output

Notice: state include “unused capacity” bits (c) - can’t recover internal state to
continue from output.

