
CSC 580
Cryptography and Computer Security

Authenticated Encryption, Key Wrapping, and PRNGs
(Sections 12.6-12.9)

April 3, 2018

Goal: Protect both Confidentiality and Integrity

Some techniques that have been used:
● Encrypt with hash of message: E(K, M || H(M))

○ E better be non-malleable!! (problem with WEP using RC4)

● Encrypt with MAC: E(K1, M || MAC(K2, M))
○ Used in SSL/TLS

● Encrypt followed by MAC: C = E(K1, M) ; T = MAC(K2, C)
○ Used in IPSec

● Encrypt and MAC: C = E(K1, M) ; T = MAC(K2, M)
○ Used in SSH

Notes:
● Important to use different keys for encryption and MAC (avoid interactions)
● All techniques have drawbacks

New and Improved! Authenticated Encryption
High-Level Idea

Ideas:
● Design for confidentiality and integrity together - use a single key!
● Allow some data to be transmitted in the clear, but still authenticated

Associated Data PlaintextNonce

Associated Data CiphertextNonce Tag

Transmitted in the clear

Authenticated Encryption (AE)Key

JCA - Using Authenticated Encryption
Example using GCM (one AE mode)

 GCMParameterSpec s = ...;
 cipher.init(..., s);

 // If the GCM parameters were generated by the provider, it can
 // be retrieved by:
 // cipher.getParameters().getParameterSpec(GCMParameterSpec.class);

 cipher.updateAAD(...); // AAD (optional - must be before plaintext)
 cipher.update(...); // Multi-part update
 cipher.doFinal(...); // conclusion of operation

 // Use a different IV value for every encryption
 byte[] newIv = ...;
 s = new GCMParameterSpec(s.getTLen(), newIv);
 cipher.init(..., s);
 ...

On encryption: Tag is embedded in output ciphertext (you don’t have to handle!)

On decryption: Bad tag results in throwing AEADBadTagException

Two AE modes: CCM and GCM
CCM (Counter with CBC-MAC)
● Ciphertext produced using CTR mode
● MAC produced using CBC-based MAC
● The good: Strong, provable security under certain assumptions
● The bad:

○ Encrypt/MAC require two independent block cipher calls
○ Inclusion of CBC means not parallelizable

GCM (Galois/Counter Mode)
● CTR mode encryption - almost… incr 32-bits → 239-bit limit on size
● GHASH to auth ciphertext - one Galois Field (GF) mult per block
● The good:

○ Strong, provable security under certain assumptions
○ Per block: 1 block cipher call, and one GF mult (Intel instruction) - fast!
○ Block cipher calls are parallelizable (just like CTR mode)

● The bad: ?

GCM - Algorithm Overview
Hash and Encryption Functions

A little misleading: When
combined, these Xi’s are
ciphertext blocks (called Yi
below)!

GCM - Algorithm Overview
Overall GCM operation

Key Wrapping
Consider: In the JCA KeyStore, keys are stored in a file. How are they
protected?
● Password used to “unlock” the KeyStore
● Need to use encryption with one key to encrypt another key
● An AES 256-bit key spans multiple blocks of AES
● Can a specially designed mode help?

○ Advantage: Limited size plaintext (can have all in memory at once)
○ Speed isn’t as big an issue as it is with bulk encryption
○ Wrapped key is random - how do you know decryption is right - authentication!
○ Specially designed mode: Key Wrap (KW) mode

Related notions with different terminology:
● Key Wrapping: Encrypting a symmetric key using symmetric cipher
● Key Encapsulation: Encrypting a symmetric key using a public key

algorithm (e.g., for hybrid encryption)

AES Key Wrap Mode
Pseudocode from NIST publication

Default IV is hex:
A6A6A6A6A6A6A6A6A6A6A6A6A6A6A6A6

Each 64-bit plaintext block gets “shifted
through” encryption position 6 times.

AES Key Wrap Mode
Diagram of one stage (from NIST)

PRNGs from Hash Functions and MACs

Observations:
● PRNGs need uniformly distributed output

○ Good hash functions and MACs have uniformly distributed outputs

● PRNGs need to be one-way so seed/state can’t be derived
○ Good hash functions and MACs are preimage resistant (one-way)

● PRNGs need output to be computationally uncorrelated (independent)
○ Good hash functions and MACs have collision resistance

And in addition: Hash functions and MACs tend to be fast

So…. Can we use hash functions and MACs to make good PRNGs?

PRNGs from hash functions
Idea: Concatenate seed and counter, and run through hash fn

So: Initialize V = seed || 0

This is essentially how the standard Java SHA1PRNG instance of
SecureRandom works (generally the default)

From Figure 12.14 in the textbook

PRNGs from MACs

Can use a simple feedback loop with a MAC (NIST SP 800-90)

Some other options
● Can use a MAC with a counter, like previous slide (IEEE 802.11i does this)
● Can do feedback, but concatenate a constant (the seed) each iteration (TLS)

