
CSC 580
Cryptography and Computer Security

Putting the Pieces Together: Protocols
SSL/TLS and SSH

Chapter 17

April 17, 2018

First: Poll for April 19 Topic

Thursday, April 19 will be “Student’s Choice” Topic

Your interest, but not optional - yes, it will be on the exam

Possible Topics
● Authenticated data structures and the Bitcoin ledger

● Tor and anonymous communication

● Hardware security support: TPMs, secure boot, enclaves, ...

● Crypto gets weird: Zero-knowledge proofs, oblivious transfer, …

● Physics gets weird: Quantum computing and cryptography

Protocols

A protocol is a set of rules and guidelines for communicating
data. Rules are defined for each step and process during
communication between two or more computers. Networks have
to follow these rules to successfully transmit data.

-- Techopedia

Protocols for secure communication use cryptographic
operations that you learned about in this class to support
higher-level security and communication objectives.

Basic Network Layers
Simplified network model (OSI model has 7 layers).

Each layer interacts with the one below it which has is less capable
(less abstraction) than the one above.

Application Layer

Transport Layer

Network Layer

Data Link Layer

“I want to retrieve the web page at http://www.google.com/”

“I want to connect to 74.125.136.105 and create a channel
 to send and receive bytes to a specific application/endpoint.”

“I want to send this small packet of bytes to 74.125.136.105”,
which is somewhere else in the world...

“I want to send this small packet of bytes to this other computer
 that I am directly connected to.”

Basic Network Layers
Simplified network model (OSI model has 7 layers).

Each layer interacts with the one below it which has is less capable
(less abstraction) than the one above.

Application Layer

Transport Layer

Network Layer

Data Link Layer

Examples: HTTP, SMTP, FTP, DNS, IMAP, SSH, ...

Examples: TCP, UDP, ICMP

Example (the only one that matters): IP

Examples: Ethernet (wired or wireless), FDDI, ATM, PPP, ...

Locations for security services

Advantage of (a): Can protect all traffic (TCP, UDP, ICMP, …)
● Particularly good for VPNs

Advantage of (b): Understands “connections”
● Particularly good for protecting connections to specific applications

Locations for security services

Advantage of (a): Can protect all traffic (TCP, UDP, ICMP, …)
● Particularly good for VPNs

Advantage of (b): Understands “connections”
● Particularly good for protecting connections to specific applications

We will focus on connection-oriented
communication, so focus on this
model...

SSL/TLS - History and Background
Generally associated with HTTPS, but protects many applications!
● Examples: IMAPS, POP3, LDAPS, SMTPS, …

SSL - “Secure Sockets Layer”
● Name: Traditional network programming API based on “sockets”
● Invented by Netscape to enable secure web browsing/e-commerce

○ Fundamental to Netscape’s business model
○ First release version was “Version 2.0” - released in 1995
○ Quickly followed by security-fixes in version 3.0 (1996)

TLS - “Transport Layer Security”:
● TLS 1.0 is SSL 3.1 (released 1999)
● Name change: Partly to avoid proprietary claims from Netscape

○ Also better reflects what it does (network layer rather than programming model)
● Latest standard version: TLS 1.2 (2008) [version 1.3 in draft form now]

○ Backward-compatible “protocol downgrade” has caused multiple vulnerabilities

General Protocol Design
Handshakes and algorithm negotiation

Design Goals: Protocols should not hard-code specific algorithms,
parameters, or key sizes. Need to be able to update dynamically!

But: Different implementations, different versions, different configs,
must interoperate!

Solution: All protocols start with a “handshake phase” - idea:

Hey I want to talk to you. I can use
these algorithms: AES-128,
AES-256, Twofish-128, ...

Great - let’s use AES-256

Client Server

Key exchange or other setup

Note: Real negotiation more complex: symmetric cipher, key exchange, integrity protections, ...

SSL and TLS Handshake

More detail about handshake:

Negotiates a “cipher suite”
● Combination of symmetric cipher,

key exchange algorithm, signature
scheme (site integrity), and MAC
(indiv message integrity)

Notes:
● Possible for both sides to use certs!
● Change_cipher_spec is basically

saying “go secure!”
● Note - initial handshake and cert

messages are before “go secure”

TLS Record Layer
Every TLS packet is encapsulated in a “TLS Record”:

Content type, version, length

MAC then encrypt!

SSL for the World Wide Web: HTTPS

HTTPS is not a different protocol - it’s HTTP sitting on SSL/TLS:

HTTP

SSL/TLS

TCP

IP

For the most part these are
independent and unaware of each
other - SSL just provides a “secure
pipe” for communication.

Some exceptions…
● Strict Transport Security: Server can include a Strict-Transport-Security line

in the HTTP header to tell the browser that only HTTPS connections should
be made
○ Browser should automatically convert http links to https
○ Refuse to connect if not secure (no downgrades, strict cert checks, etc.)

● Cookies: Secure flag
○ Normally cookies sent to any host in a given domain
○ Cookies with the secure flag will only be sent over https connections

Certificates for Web Sites
In the past: Buy a certificate - good for 1-3 years - could be expensive!

The new kid on the block – letsencrypt.org:

Goal: Promotes “encryption everywhere” - that’s good!

Bad: Not as carefully vetted as commercial certs, and expires often (every 3 mos)

SSH - Purpose

Before 1995:
● Log in to work on a remote machine: rlogin or telnet
● Transfer files: ftp
● Remote command execution: rsh

All used logins/passwords, and none were encrypted!
Plaintext passwords flying all over the place!

Note: Kerberos (klogin) was an exception, but not widely used.

SSH (secure shell) was a reaction to widespread sniffing attacks.

Originally used mostly for logins (slogin), but has evolved to provide:
● File transfers (scp and sftp)
● Remote command execution (ssh)
● Port forwarding for encrypting any TCP connection (“poor-man’s VPN”)

Also: Better, non-password-based authentication w/o Kerberos-style infrastructure

SSH - Handshake and Packet/Record
Same concepts as SSL - different details

Demos!

In the remaining time: Demos looking into protocol packets

