CSC 580
Cryptography and Computer Security

Math Basics for Cryptography

January 25, 2018

Overview

Today: Math basics (Sections 2.1-2.3)

To do before Tuesday:

e Complete HW1 problems
e Read Sections 3.1, 3.2 (can skip Hill Cipher), and 3.5

Longer term:
e Talk to classmates about teams for research project

The Big Picture...

Messages are typically strings of symbols from a finite alphabet
e Strings from the set of 26 letters (“classical cryptography”)
e Strings of bytes (256 possible values for each byte)
e Strings of larger blocks (e.g., 128-bit blocks for AES)

Problem: Doing arithmetic with values takes you out of the allowed range
e (Caesar cipher adds 3 to each letter: 24 + 3 = 27 <« oops - not a valid letter!

Solution:
e View infinite number line in “pieces” of appropriate size

e All pieces give different representatives of same alphabet
e So above, 27=26+1 is treated the same as 1

0..25 26 +(0..25)
: \l : |

26 52 78

-52 -26
Modular arithmetic - more useful than just “working with a finite alphabet
You have all seen this before: Do you remember where?

O —4— —

Some Basic Ildeas and Definitions

Divisibility, multiples, divisors, ...

Terminology: For integers a, b, and m, if a=m*b then

a is a multiple of b

b divides a (written b | a)
b is a divisor of a

b is a factor of a

Every integer has a set of positive divisors (incl. at least 1)
e Example 1: Divisors of 15 are 1,3,5,15

e Example 2: Divisors of 18 are 1, 2, 3, 6, 9, 18

e Often interested in greatest common divisor (gcd(15,18)=3)

Modular Arithmetic

Definitions and some basic properties

For any a and b, there is a unique r such that
a=q*b+r, where0<r<b (andq=|a/b])

e (is the guotient
e risthe remainder

Two related notions:

e mod as a binary operator
o amod b is the remainder of a divided by b
o fmodd5=2; 24mod7=3; 2T mod9=0

e mod as a congruence relation
o a=b(modn) ifandonlyif (a-b)|n
o 7=12(modb5) ;24=3 (mod7) ; 128 =428 (mod 100)

Modular Arithmetic

Definitions and some basic properties

For any a and b, there is a unique r such that
a=q*b+r, where0<r<b (andq=|a/b])

e (isthe quotient Warning: Best to always work with

e risthe remainder non-negative numbers with mod. Some
languages (like C) say mod definition on
negative numbers is “implementation
dependent” (with certain restrictions - but
e mod as a binary operator | it's unpredictable!).

Two related notions:

o amod b is the remainder of a divided by b
o /fmodd=2;24mod7=3 ; 27 mod9=0

e mod as a congruence relation
o a=b(modn) ifandonlyif (a-b)|n
o 7=12(modb5) ;24=3 (mod7) ; 128 =428 (mod 100)

Greatest Common Divisor

A very important algorithm!

Numbers a and b are relatively
prime if gcd(a,b) = 1

How to compute gcd fast?

Euclid’s Algorithm

Assuming a > b:

gcd(a,b):
if (b | a) then return b
else return gcd(b, (a mod b))

Running time: O(log b)

Example: gcd(522,64)

a b (a mod b)

522 64 10

amod b =0 means b | a;se.done
Final answer gcd(522,64) = 2

You try one:

Compute gcd(77,64)

Modular Arithmetic

A very important property

If you want the result of an algebraic formula modulo n, it doesn’t
matter if you do the mod operation mid-computation or just at the end!

So ((x*y+321)*71+z) mod n = ((x*y) mod n + 321)*71 + z) mod n

Application: Keep all intermediate results small

Example: | want to compute 1234'® mod 10000

12347° is 50 digits long — overflows 64-bit integer

Note that 1234'° = (((12342)?)?)?

Can do (((1234? mod 10000)? mod 10000)? mod 10000)? mod 10000
No intermediate result can be larger than 99992 = 99,980,001 (8 digits)

Modular Arithmetic
Other properties of modular addition

The “mod 7” addition table (notice how easy to do in Python!)

//:;> np.asmatrix([[(i+j)%7 for j in range(7)] for i in range(7)1)‘\\\
matrix([[0, 1, 2, 3, 4, 5, 6],

[1, 2, 3, 4, , 9],

[2, 1],

[3, 2],

J

J J

-
-

-
-
-
-

-
-
-
-

[5, 4],

K [6, 511) /

5
6
%)
1
2
3

-
A W N P ® O
-

-

3
4
[4, 5, 3],
6
(%]

-

R ®© O Ul b
-

N P O O U
-

-

J

Properties

0 is the “identity” (for every x, 0 + x mod 7 = x)

Each row/column contains all values, shifted by an appropriate amount
o Each row/column includes a 0 — each element has an additive inverse

Not obvious from table, but: operation is associative and commutative

Note: These properties hold for any modulus, not just 7

Modular Arithmetic
Other properties of modular multiplication

The “mod 7” multiplication table

///:>> np.asmatrix([[(i*j)%7 for j in range(7)] for i in range(7)])‘\\\

matrix([[©, ©, 0, ©, O, 0, 0],
[0, 1, 2, 3, 4, 5, 6],
[0, 2, 4, 6, 1, 3, 5],
[0, 3, 6, 2, 5, 1, 4],
[0, 4, 1, 5, 2, 6, 3],
[0, 5, 3, 1, 6, 4, 2],
6, 5, 4, 3, 2,

K (o, 111) /

Properties of the “mod 7” multiplication table - for all elements except O:
e 1 isthe “identity” (for every x, 1 *xmod 7 = x)
e Each row/column contains all values, permuted
o Each row/column includes a1 — each element has a multiplicative inverse

Not obvious from table, but: operation is associative and commutative

Do these properties hold for any modulus?

Modular Arithmetic
Other properties of modular multiplication

The “mod 8" multiplication table

///:>> np.asmatrix([[(i*j)%8 for j in range(8)] for i in range(s)];\\\

matrix([[0, ©, 0, 0, @0, O, 0, O],

[0, 1, 2, 3, 4, 5, 6, 7],

[0, 2, 4, 6, 0, 2, 4, 6],

[0, 3, 6, 1, 4, 7, 2, 5],
e Row doesn’t contain a 1!

[0, 5, 2, 7, 4, 1, 6, 3],

[0, 6, 4, 2, 0, 6, 4, 2],

k [0, 7, 6, 5, 4, 3, 2, 1]])

Next: Try a few more moduli in Python... What's the pattern for rows with 1's?

Modular Arithmetic
Other properties of modular multiplication

The “mod 8" multiplication table

///:>> np.asmatrix([[(i*j)%8 for j in range(8)] for i in range(s)];\\\

matrix([[0, ©, 0, 0, @0, O, 0, O],

[0, 1, 2, 3, 4, 5, 6, 7],

[0, 2, 4, 6, 0, 2, 4, 6],

[0, 3, 6, 1, 4, 7, 2, 5],
e Row doesn’t contain a 1!

[0, 5, 2, 7, 4, 1, 6, 3],

[0, 6, 4, 2, 0, 6, 4, 2],

k [0, 7, 6, 5, 4, 3, 2, 1]])

Next: Try a few more moduli in Python... What's the pattern for rows with 1's?

Answer: Row x has a 1 (i.e., x has a mult inverse) if and only if x is
relatively prime to the modulus.

Important fact: Can use the “Extended Euclidean” algorithm to find x’s
inverse mod n in O(log n) time. (details in book)

Number Sizes
Estimating with powers of two

Important values to know cold:

20 is “about 1000” (actually 1024)

220 is “about a million” (actually 1,048,576)
230 is “about a billion”

240 is “about a trillion”

And the converse for dealing with base 2 logarithms:

log,(1000) is about 10
log,(1,000,000) is about 20
log,(1,000,000,000) is about 30

Number Sizes
Using for quick estimates - crypto example

Consider a “key cracking” machine that is clocked at 1
GHz, so can test 1 billion keys per second.

Attacking a cipher with 40-bit keys.

Question: How long to test all possible keys?

1.

o & 0D

A billion keys/second is about 2°° keys/second
There are 2%° different 40-bit keys

Time required is then 240 / 230 = 219 seconds
210 seconds is about 1,000 seconds

An hour has 3,600 seconds, so this is just a little over 15 minutes
(not a very secure cipher!)

Number Sizes
More precise estimates

Know powers of 2 up to 2'° - a few important ones:
o 24=16
o 2°=32
o 28=256

Examples:
e Whatis 22°? 220-2° = approx 32 million
e Whatis 2%? 230-2% = approx 256 billion

Relation to a few other measures:

e One hour is 3,600 seconds, which is approx 22

e One day is 86,400, which is approx 2'° (closer: 24)
e One year is approx 22° seconds

So 8 trillion cycles on a 1GHz machine takes:
241230 =23 seconds — about 2 hours

Number Sizes
Algorithm understanding example

Need the multiplicative inverse of a number with 55-bit modulus

“Counting down” algorithm:

e For modulus n takes time ©(n) time
e n=2% — 2% computational steps
e At a billion steps / second — 2°%/230 = 225 seconds (1 year)

Euclid’s algorithm:

e For modulus n, takes time O(log n) (specifically, < 2*log,(n) steps)
e nis2>® — lessthan 2*55 =110 steps
e At a billion steps / second — Less than a millionth of a second

Your turn!

DES (which we’ll look at next week) uses a 56-bit key. In 1998 a

machine (“Deep Crack”) was built that could test 90 billion keys per
second.

How long does it take to test all keys? (Hint: round values sensibly!)

Number Sizes
Moore’s Law

Moore’s Law states that computing power doubles
approximately every 18 months (1.5 years).

COMMUNICATIONS

Example use: ~ACM

i Exponential Laws of
9 years from now, we will have had 6 B Grown

“doublings”, so computing power will be
2° = 64 times faster than today.

Can this continue indefinitely?
No.

Are we near the end of Moore’s Law? §
Opinions vary....

Your turn #2! Moore’s Law and flipped around

A reasonable “clock speed” today is around 2-4 GHz, so assume that is the
lower bound for a single core to test a key (really takes longer).

Custom hardware can give you a speed boost of, say, a million times.

Question: Assuming Moore’s Law continues, how many bits should a key
have to be safe for the next 30 years? What if you wanted an extra “cushion”
of a factor of 10007

Number Sizes

Some really big numbers (impress your friends!)
Handout: “Large Numbers” from Applied Cryptography (Schneier)

Fun with large numbers....

e Randomly guessing a DES key: Probability of getting the correct key
Is half the probability of “winning the top prize in a U.S. state lottery
and being killed by lightning in the same day.”

e Time to go through all 128-bit values at 1 trillion/second
2128 | 240 = 288 seconds (or 288/22° = 2%3 years ... or 2°3/230 = 223

or 8 million times the “time until the sun goes nova”)

e Factoring 1024-bit numbers (for breaking a small RSA key)
Idea: Can we make a table of all prime factorizations?
21924 entries in the table. 22°° atoms in the universe. So not even

remotely within the realm of possibility.

Number Sizes
Some really big numbers (impress your friends!)

A final thing to think about:
Finding a multiplicative inverse with a 2048-bit modulus is a very

common operation in cryptography.

If we didn’t know Euclid’s algorithm, how long would the “counting
down” algorithm take?

