CSC 580
Cryptography and Computer Security

Tweakable Block Ciphers and Disk Encryption
(Sections 7.7)

February 15, 2018

Goal: Encrypt a Block Storage Device

Block storage devices

e Used for “bulk storage”
e Hard drives, solid-state drives, thumb drives, ...
e Devices often portable and can’t be physically protected

What encryption is out there?

Software FDE (Full Disk Encryption)
N

VeraCrypt

VeraCrypt

SOURCE CODE DOWNLOADS DOCUMENTATION DISCUSSIONS

Page Info | Change History (all pages)

Project Description

VeraCrypt is a free disk encryption software brought to you by IDRIX (https://www.idrix.fr) and that is based on
TrueCrypt 7.1a.

Latest Stable Release - 1.19 (Mon Oct 17, 2016)
|

VeraCrypt is a successor to TrueCrypt

TrueCrypt was used for years as a cross-platform disk encryption
tool - development discontinued in 2014 (interesting story...)

Microsoft FDE for Windows

BitLocker

Enter the password to unlock this drive

Press the Insert key to see the password as you types

BitLocker combines software FDE with hardware key protection

e Uses the Trusted Platform Module (TPM)

e Can be tightly integrated with UEFI Secure Boot
e Can also require a USB drive as a key

e Can encrypt USB drives...

Disk Encryption in the Disk Itself

TECHSPOT » ocin f U.ﬁ

FEATURES HARDWARE

Self-Encrypting Drives: A Brief Introduction
and Step by Step Guide

By Matt Bach on August 22, 2014

A SED, or self-encrypting drive, is a type of hard drive that automatically and continuously encrypts the
data in it without any user interaction. What may surprise many is that a decent potion of the drives
currently in the market, including the popular Samsung 840 Pro SSD series are in fact SEDs. But since
manufactures do not tout this as a major feature, it often gets lost in the large number of typically more
important specifications.

Even once you purchase, install, and start using one of these SED drives, the encryption is so
transparent to the user that it is unlikely they would ever realize the drive is a SED.

|

Write

Read

Sample data

»3Q 2y} 0} Buipioooe
paydAiap 1o pajdhnua sieleq

|

B

~

o N
> > .
" rksp2s8kao2 Ve /

- F
| 2 " -
G . -

_/J o

Properties of Block Storage

Data in fixed-size blocks/sectors
Only full blocks can be read/written

Data structures optimized for layout

e Filesystems
e DB-trees (databases)

Cylindear

Some desirable properties (more in textbook)

Data size must remain the same (think about CBC)

Data layout must remain the same (blocks map to blocks)
Same data in different locations has different ciphertext
Vital for this to be fast!

Tweakable Block Ciphers

Tweakable Encryption: E(K, T, P) =C

AN

Key Tweak Plaintext

Goal: “Tweak” adds variability without IV or CT length increase

Efficiency goal: More efficient than changing key
e Remember: Can precompute key schedule

P T

Attempt 1:

e CTR mode with T as CTR? L. @

e Bad: Malleable \
Attempt 2: | | / K—— Block Cipher

e XOR plaintext blocks with counter

e Good: Mixes up ciphertext l

e Bad: What if plaintext blocks are counters?

Tweakable Block Ciphers

Tweakable Encryption: E(K, T, P

//\

Tweak

Attempt 3:

XOR before and after with “random looking” data
Good: Unlikely to accidentally have bad patterns
Bad: Can an attacker create bad patterns?

|s this a danger? Unclear...

©)

Plaintext

Tj

|

Hash
function

HOT))

) 4
D«
1/

y K

Encrypt <J

Y
M«
<€

o

One that works: XTS-AES

Idea: Encrypt sector number for

unpredictable plaintext i Sector number
adjustment. J: Cipher block number within sector
Efficiency: Key is really two keys...

e Circled part is the same for all
blocks in sector - compute

j P
oncel! ’ @ 1
e Block adjustments (o') doesn’t Kev ‘
. J2 r
depend on i - precompute! | e 7
. . . Encrypt
e Combination (®) sped up in PP
AES-NI instructions AES
ry T
Unpredictable from Encrypt Key,

tweak before combining CC
with plaintext

Test your understanding...

How many block cipher encryptions are needed to encrypt
a 512-byte sector?

Programming with Crypto
Discussion on board and looking at JCA documentation:

Using block cipher modes

e Handling the IV
o Importance of randomness
o Sending with the ciphertext
o Extracting and using to decrypt

e Binary, text, and Base64

