CSC 580
Cryptography and Computer Security

Public-Key Encryption Idea and Some Supporting Math
(Sections 9.1, 2.4-2.6)

March 13, 2018

Overview

Today:
e Basic idea/motivation for public-key cryptography
e Math needed for RSA (working with prime numbers, etc.)

Next:
e Read Section 9.2 (RSA)

e Don't forget that you have a graded homework to work on!
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Public Key Crypto

Where do the keys come from?

Symmetric Ciphers Public Key Crypto
Randomness (R) Randomness (R)

KeyPair Generator (KPG)

Secret Key (SK)
PubKey (PU)  PrivKey (PR)

Mathematical/Computational Properties

e KPG(R) — (PU, PR) is efficiently computable (polynomial time)

e For all messages M, D(PR, E(PU, M)) =M (decryption works)

e Computing PR from PU is computationally infeasible (we hope!)

Generally: PR has some “additional information” that makes some function of PU
easy to compute (which is hard without that info) - this is the “trapdoor secret”

How can this be possible?

To get a sense of how trapdoor secrets help:

Problem: How many numbers x €{1,N-1} have gcd(x,N)>1 for N=32,501,477?
(or: how many have a non-trivial common factor with N?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?

How can this be possible?
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How can this be possible?

To get a sense of how trapdoor secrets help:

Problem: How many numbers x €{1,N-1} have gcd(x,N)>1 for N=32,501,4777?
(or: how many have a non-trivial common factor with N?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?

What if | told you the prime factorization of N is 5,407 * 6,011?

5,406 multiples of 6,011 share the factor 6,011 with N

6,010 multiples of 5,407 share the factor 5,407 with N

No numbers in common between these two sets (prime numbers!)
So... 5,406+6,010 = 11,416 numbers share a factor with 32,501,477

The factorization of N is a “trapdoor” that allows you to compute some functions of N faster

A Step Toward Public-Key Crypto

So, when solving the problem: Given a number N, how many
positive integers share a non-trivial factor with N?

o If you know the prime factorization of N, this is easy.
e [f you don’t know the factorization, don’t know efficient solution

How does this fit into the public key crypto model?

e Pick two large (e.g., 1024-bit) prime numbers p and q
e Compute the product N=p*q
e Public key is N (hard to find p and q!), private is the pair (p,q)

Questions:

e How do we pick (or detect) large prime numbers?
e How do we use this trapdoor knowledge to encrypt?

Prime Numbers

A prime number is a number p for which its only positive divisors
are 1 and p

Question: How common are prime numbers?

e The Prime Number Theorem states that there are approximately
n/In n prime numbers less than n.

e Picking a random b-bit number, probability that it is prime is
approximately 1/In(2°) = (1/In 2)*(1/b) = 1.44 * (1/b)
o For 1024-bit numbers this is about 1/710
o “Pick random 1024-bit numbers until one is prime” takes on average
710 trials (“pick random odd 1024-number” finds primes faster!)
o This is efficient - if we can tell when a number is prime!




Primality Testing

Problem: Given a number n, is it prime?

Basic algorithm: Try dividing all numbers 2,..,sqrt(n) into n

Question: How long does this take if n is 1024 bits?

Fermat’s Little Theorem

To do better, we need to understand some properties of prime
numbers, such as...

Fermat’s Little Theorem: If p is prime and a is a positive integer
not divisible by p, then

a”'=1 (mod p).

Proof is on page 46 of the textbook (not difficult!).

Fermat’s Little Theorem - cont’d

Explore this formula for different values of n and random a’s:

a a™ mod n a™ mod n a™ mod n a™ mod n

(n=221) (n=331) (n=441) (n=541)
64 1 1 379 1
189 152 1 0 1
82 191 1 46 1
147 217 1 0 1
113 217 1 232 1
198 81 1 270 1

Question 1: What conclusion can be drawn about the primality of 2217

Question 2: What conclusion can be drawn about the primality of 3317




Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for n:

Pick random a € {2, ... , n-2}
if a™! mod n # 1 then return “not prime”
else return “probably prime”

Why doesn'’t this work?

Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for n:

Pick random a € {2, ... , n-2}
if a"! mod n # 1 then return “not prime”
else return “probably prime”

Why doesn't this work? Carmichael numbers.... ° | &.7%n
64 1
Example: 2465 is obviously not prime, but —— ;49 1
82 1
Note: Not just for these a'’s, but @™ mod n = 1 147 1
for all a’s that are relatively prime to n. 113 1
198 1

Primality Testing - Miller-Rabin

The previous idea is good, with some modifications
(Note: This corrects a couple of typos in the textbook):

MILLER-RABIN-TEST(n) // Assume n is odd

Find k>0 and q odd such that n-1 = 2%q

Pick random a € {2, ... , n-2}

x = a% mod n

if x = 1 or x = n-1 then return “possible prime”
=1 to k-1 do
= x2 mod n

if x = n-1 then return “possible prime”
return “composite”

If n is prime, always returns “possible prime”
If n is composite, says “possible prime” (incorrect) with probability < %4

Idea: Run 50 times, and accept as prime iff all say “possible prime”
Question: What is the error probability?




Euler’s Totient Function and Theorem

Euler’s totient function: ¢(n) = number of integers from 1 .. n-1 that are
relatively prime to n.

e |f s(n) is count of 1..n-1 that share a factor with n, p(n) =n -1 - s(n)
o s(n) was our “trapdoor function” example
o ¢(n) easy to compute if factorization of n known
o Don’t know how to efficiently compute otherwise
e |f nis product of two primes, n=p*q, then s(n)=(p-1)+(g-1)=p+q-2
© So¢(p*q) =p*q-1-(p+q-2)=p*q-p-q+1=(p-1)"(q-1)

Euler generalized Fermat's Little Theorem to composite moduli:

Euler’'s Theorem: For every a and n that are relatively prime (i.e., gcd(a,n)=1),
a*™ =1 (mod n) .

Question: How does this simplify if n is prime?

Next Time...

In the next class we'll see the RSA Public-Key
Encryption Scheme uses this!




