CSC 580
Cryptography and Computer Security

Public-Key Encryption Idea and Some Supporting Math
(Sections 9.1, 2.4-2.6)

March 13, 2018

Overview

Today:
e Basic idea/motivation for public-key cryptography
e Math needed for RSA (working with prime numbers, etc.)

Next:
e Read Section 9.2 (RSA)

e Don't forget that you have a graded homework to work on!

Recall Basic Idea

Network aGXU4N<:1EvxxYEL4}
Interface Oh7dP6]%<

ﬁ Keys the same or different?

Network
Interface

Decryption
Function

T

Different: “Public-key crypto”
Encryption
Function

Some algorithms: RSA, ElGamal,

stranger!)

Worst feature: Slow (1-2 Mbps for
2048-bit RSA - others are a little
faster...)

ay with
1234 5678 9012 3456

ﬁ Best feature: Simpler key
E management (can send to a

Pay with
1234 5678 9012 3456




Public Key Crypto

Where do the keys come from?

Symmetric Ciphers Public Key Crypto
Randomness (R) Randomness (R)

KeyPair Generator (KPG)

Secret Key (SK)
PubKey (PU)  PrivKey (PR)

Mathematical/Computational Properties

e KPG(R) — (PU, PR) is efficiently computable (polynomial time)

e For all messages M, D(PR, E(PU, M)) =M (decryption works)

e Computing PR from PU is computationally infeasible (we hope!)

Generally: PR has some “additional information” that makes some function of PU
easy to compute (which is hard without that info) - this is the “trapdoor secret”

How can this be possible?

To get a sense of how trapdoor secrets help:

Problem: How many numbers x €{1,N-1} have gcd(x,N)>1 for N=32,501,477?
(or: how many have a non-trivial common factor with N?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?

How can this be possible?

To get a sense of how trapdoor secrets help:

Problem: How many numbers x €{1,N-1} have gcd(x,N)>1 for N=32,501,477?
(or: how many have a non-trivial common factor with N?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?

What if | told you the prime factorization of N is 5,407 * 6,011?




How can this be possible?

To get a sense of how trapdoor secrets help:

Problem: How many numbers x €{1,N-1} have gcd(x,N)>1 for N=32,501,4777?
(or: how many have a non-trivial common factor with N?)

How could you figure this out?
How long would it take to compute?
What if N were 600 digits instead of 8 digits?

What if | told you the prime factorization of N is 5,407 * 6,011?

5,406 multiples of 6,011 share the factor 6,011 with N

6,010 multiples of 5,407 share the factor 5,407 with N

No numbers in common between these two sets (prime numbers!)
So... 5,406+6,010 = 11,416 numbers share a factor with 32,501,477

The factorization of N is a “trapdoor” that allows you to compute some functions of N faster

A Step Toward Public-Key Crypto

So, when solving the problem: Given a number N, how many
positive integers share a non-trivial factor with N?

o If you know the prime factorization of N, this is easy.
e [f you don’t know the factorization, don’t know efficient solution

How does this fit into the public key crypto model?

e Pick two large (e.g., 1024-bit) prime numbers p and q
e Compute the product N=p*q
e Public key is N (hard to find p and q!), private is the pair (p,q)

Questions:

e How do we pick (or detect) large prime numbers?
e How do we use this trapdoor knowledge to encrypt?

Prime Numbers

A prime number is a number p for which its only positive divisors
are 1 and p

Question: How common are prime numbers?

e The Prime Number Theorem states that there are approximately
n/In n prime numbers less than n.

e Picking a random b-bit number, probability that it is prime is
approximately 1/In(2°) = (1/In 2)*(1/b) = 1.44 * (1/b)
o For 1024-bit numbers this is about 1/710
o “Pick random 1024-bit numbers until one is prime” takes on average
710 trials (“pick random odd 1024-number” finds primes faster!)
o This is efficient - if we can tell when a number is prime!




Primality Testing

Problem: Given a number n, is it prime?

Basic algorithm: Try dividing all numbers 2,..,sqrt(n) into n

Question: How long does this take if n is 1024 bits?

Fermat’s Little Theorem

To do better, we need to understand some properties of prime
numbers, such as...

Fermat’s Little Theorem: If p is prime and a is a positive integer
not divisible by p, then

a”'=1 (mod p).

Proof is on page 46 of the textbook (not difficult!).

Fermat’s Little Theorem - cont’d

Explore this formula for different values of n and random a’s:

a a™ mod n a™ mod n a™ mod n a™ mod n

(n=221) (n=331) (n=441) (n=541)
64 1 1 379 1
189 152 1 0 1
82 191 1 46 1
147 217 1 0 1
113 217 1 232 1
198 81 1 270 1

Question 1: What conclusion can be drawn about the primality of 2217

Question 2: What conclusion can be drawn about the primality of 3317




Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for n:

Pick random a € {2, ... , n-2}
if a™! mod n # 1 then return “not prime”
else return “probably prime”

Why doesn'’t this work?

Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for n:

Pick random a € {2, ... , n-2}
if a"! mod n # 1 then return “not prime”
else return “probably prime”

Why doesn't this work? Carmichael numbers.... ° | &.7%n
64 1
Example: 2465 is obviously not prime, but —— ;49 1
82 1
Note: Not just for these a'’s, but @™ mod n = 1 147 1
for all a’s that are relatively prime to n. 113 1
198 1

Primality Testing - Miller-Rabin

The previous idea is good, with some modifications
(Note: This corrects a couple of typos in the textbook):

MILLER-RABIN-TEST(n) // Assume n is odd

Find k>0 and q odd such that n-1 = 2%q

Pick random a € {2, ... , n-2}

x = a% mod n

if x = 1 or x = n-1 then return “possible prime”
=1 to k-1 do
= x2 mod n

if x = n-1 then return “possible prime”
return “composite”

If n is prime, always returns “possible prime”
If n is composite, says “possible prime” (incorrect) with probability < %4

Idea: Run 50 times, and accept as prime iff all say “possible prime”
Question: What is the error probability?




Euler’s Totient Function and Theorem

Euler’s totient function: ¢(n) = number of integers from 1 .. n-1 that are
relatively prime to n.

e |f s(n) is count of 1..n-1 that share a factor with n, p(n) =n -1 - s(n)
o s(n) was our “trapdoor function” example
o ¢(n) easy to compute if factorization of n known
o Don’t know how to efficiently compute otherwise
e |f nis product of two primes, n=p*q, then s(n)=(p-1)+(g-1)=p+q-2
© So¢(p*q) =p*q-1-(p+q-2)=p*q-p-q+1=(p-1)"(q-1)

Euler generalized Fermat's Little Theorem to composite moduli:

Euler’'s Theorem: For every a and n that are relatively prime (i.e., gcd(a,n)=1),
a*™ =1 (mod n) .

Question: How does this simplify if n is prime?

Next Time...

In the next class we'll see the RSA Public-Key
Encryption Scheme uses this!




