CSC 580 Cryptography and Computer Security

Public-Key Encryption Idea and Some Supporting Math (Sections 9.1, 2.4-2.6)

March 13, 2018

Overview

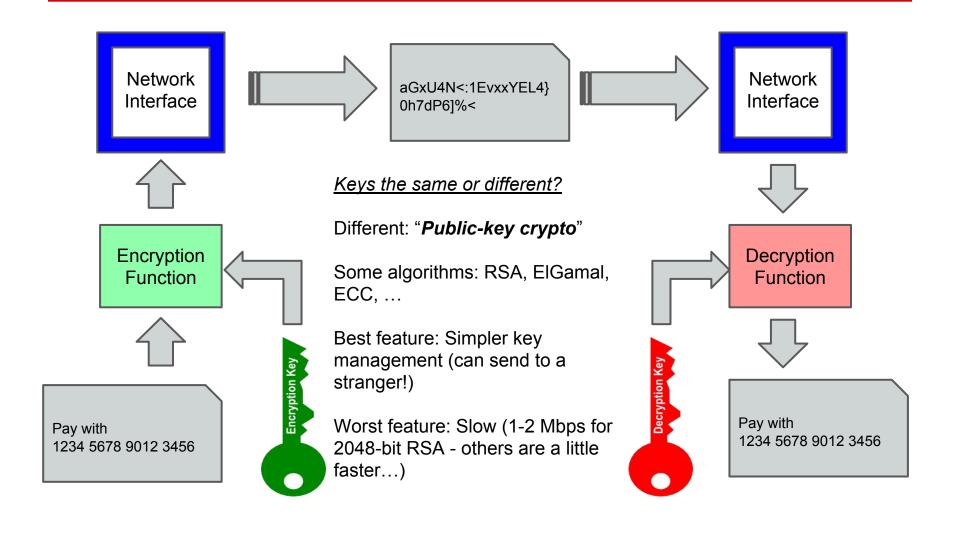
Today:

- Basic idea/motivation for public-key cryptography
- Math needed for RSA (working with prime numbers, etc.)

Next:

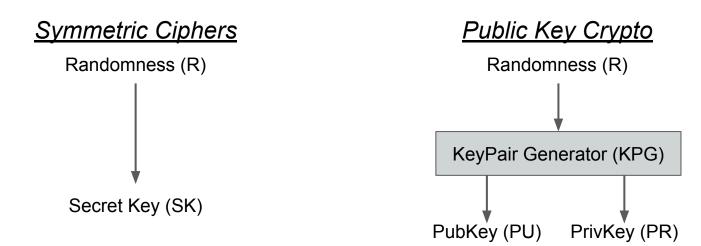
- Read Section 9.2 (RSA)
- Don't forget that you have a graded homework to work on!

Recall Basic Idea



Public Key Crypto

Where do the keys come from?



Mathematical/Computational Properties

- KPG(R) → (PU, PR) is efficiently computable (polynomial time)
- For all messages M, D(PR, E(PU, M)) = M (decryption works)
- Computing PR from PU is computationally infeasible (we hope!)

Generally: PR has some "additional information" that makes some function of PU easy to compute (which is hard without that info) - this is the "trapdoor secret"

How can this be possible?

To get a sense of how trapdoor secrets help:

<u>Problem</u>: How many numbers $x \in \{1, N-1\}$ have gcd(x, N) > 1 for N = 32, 501, 477? (or: how many have a non-trivial common factor with N?)

How could you figure this out? How long would it take to compute? What if *N* were 600 digits instead of 8 digits?

How can this be possible?

To get a sense of how trapdoor secrets help:

<u>Problem</u>: How many numbers $x \in \{1, N-1\}$ have gcd(x, N) > 1 for N = 32, 501, 477? (or: how many have a non-trivial common factor with N?)

How could you figure this out? How long would it take to compute? What if *N* were 600 digits instead of 8 digits?

What if I told you the prime factorization of *N* is 5,407 * 6,011?

How can this be possible?

To get a sense of how trapdoor secrets help:

<u>Problem</u>: How many numbers $x \in \{1, N-1\}$ have gcd(x, N) > 1 for N = 32, 501, 477? (or: how many have a non-trivial common factor with N?)

How could you figure this out? How long would it take to compute? What if *N* were 600 digits instead of 8 digits?

What if I told you the prime factorization of N is 5,407 * 6,011?

5,406 multiples of 6,011 share the factor 6,011 with *N* 6,010 multiples of 5,407 share the factor 5,407 with *N* No numbers in common between these two sets (prime numbers!) So... 5,406+6,010 = 11,416 numbers share a factor with 32,501,477

The factorization of *N* is a "trapdoor" that allows you to compute some functions of *N* faster

A Step Toward Public-Key Crypto

So, when solving the problem: Given a number N, how many positive integers share a non-trivial factor with N?

- If you know the prime factorization of N, this is easy.
- If you don't know the factorization, don't know efficient solution

How does this fit into the public key crypto model?

- Pick two large (e.g., 1024-bit) prime numbers p and q
- Compute the product N = p * q
- Public key is N (hard to find p and q!), private is the pair (p,q)

Questions:

- How do we pick (or detect) large prime numbers?
- How do we use this trapdoor knowledge to encrypt?

Prime Numbers

A prime number is a number p for which its only positive divisors are 1 and p

Question: How common are prime numbers?

- The Prime Number Theorem states that there are approximately n / In n prime numbers less than n.
- Picking a random *b*-bit number, probability that it is prime is approximately $1/\ln(2^b) = (1/\ln 2)^*(1/b) \approx 1.44 * (1/b)$
 - For 1024-bit numbers this is about 1/710
 - "Pick random 1024-bit numbers until one is prime" takes on average
 710 trials ("pick random <u>odd</u> 1024-number" finds primes faster!)
 - This is efficient if we can tell when a number is prime!

Primality Testing

Problem: Given a number *n*, is it prime?

Basic algorithm: Try dividing all numbers 2,..,sqrt(n) into n

Question: How long does this take if *n* is 1024 bits?

Fermat's Little Theorem

To do better, we need to understand some properties of prime numbers, such as...

<u>Fermat's Little Theorem</u>: If *p* is prime and *a* is a positive integer not divisible by *p*, then

$$a^{p-1} \equiv 1 \pmod{p} .$$

Proof is on page 46 of the textbook (not difficult!).

Fermat's Little Theorem - cont'd

Explore this formula for different values of *n* and random *a*'s:

а	$a^{n-1} \mod n$ (n = 221)	$a^{n-1} \mod n$ (n = 331)	$a^{n-1} \mod n$ (n = 441)	$a^{n-1} \mod n$ (n = 541)
64	1	1	379	1
189	152	1	0	1
82	191	1	46	1
147	217	1	0	1
113	217	1	232	1
198	81	1	270	1

Question 1: What conclusion can be drawn about the primality of 221?

Question 2: What conclusion can be drawn about the primality of 331?

Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for *n*:

```
Pick random a \in \{2, ..., n-2\}
if a^{n-1} \mod n \neq 1 then return "not prime"
else return "probably prime"
```

Why doesn't this work?

Primality Testing - First Attempt

Tempting (but incorrect) primality testing algorithm for *n*:

```
Pick random a \in \{2, ..., n-2\}
if a^{n-1} \mod n \neq 1 then return "not prime"
else return "probably prime"
```

Why doesn't this work? Carmichael numbers....

Example: 2465 is obviously not prime, but ——

Note: Not just for these a's, but $a^{n-1} \mod n = 1$ for **all** a's that are relatively prime to n.

	а	$a^{n-1} \mod n$ (n = 2465)			
	64	1			
•	189	1			
	82	1			
	147	1			
	113	1			
	198	1			

Primality Testing - Miller-Rabin

The previous idea is good, with some modifications (Note: This corrects a couple of typos in the textbook):

```
MILLER-RABIN-TEST(n) // Assume n is odd
   Find k>0 and q odd such that n-1 = 2<sup>k</sup>q
   Pick random a ∈ {2, ..., n-2}
   x = a<sup>q</sup> mod n
   if x = 1 or x = n-1 then return "possible prime"
   for j = 1 to k-1 do
        x = x<sup>2</sup> mod n
        if x = n-1 then return "possible prime"
   return "composite"
```

If n is prime, always returns "possible prime" If n is composite, says "possible prime" (incorrect) with probability $< \frac{1}{4}$

<u>Idea</u>: Run 50 times, and accept as prime iff all say "possible prime" <u>Question</u>: What is the error probability?

Euler's Totient Function and Theorem

<u>Euler's totient function</u>: $\phi(n)$ = number of integers from 1 .. n-1 that are relatively prime to n.

- If s(n) is count of 1..n-1 that share a factor with n, $\phi(n) = n$ 1 s(n)
 - \circ s(n) was our "trapdoor function" example
 - $\circ \phi(n)$ easy to compute if factorization of n known
 - Don't know how to efficiently compute otherwise
- If *n* is product of two primes, $n=p^*q$, then s(n)=(p-1)+(q-1)=p+q-2
 - $\circ \quad \text{So } \phi(p^*q) = p^*q 1 (p+q-2) = p^*q p q + 1 = (p-1)^*(q-1)$

Euler generalized Fermat's Little Theorem to composite moduli:

<u>Euler's Theorem</u>: For every a and n that are relatively prime (i.e., gcd(a,n)=1), $a^{\phi(n)} \equiv 1 \pmod{n}$.

<u>Question</u>: How does this simplify if *n* is prime?

Next Time...

In the next class we'll see the RSA Public-Key Encryption Scheme uses this!