## CSC 580 Cryptography and Computer Security

The RSA Algorithm and Key Size Issues (Section 9.2 and more)

March 15, 2018

### **Overview**

#### Today:

- Overview/demo of research tools
- The RSA Algorithm key sizes and factoring

#### Next:

- Read Sections 2.8, 10.1, and 10.2
- Complete ungraded homework 6
- Remember to be working on graded homework 2 (due next Thurs)

## First up... some demos of research tools

Tools being demonstrated:

- Zotero (managing papers, citations, etc.)
- LaTeX and paper format templates
- BibTeX

# Back to Crypto... Recap of last time

<u>Miller-Rabin Primality Testing</u>: There is an efficient randomized algorithm for testing if large numbers are prime (with very low probability of error).

• So: There is an efficient algorithm for *finding* large random prime numbers

<u>Euler's totient function</u>:  $\phi(n)$  = number of integers from 1..*n*-1 that are relatively prime to *n*.

<u>Euler's Theorem</u>: For every *a* and *n* that are relatively prime (i.e., gcd(a,n)=1),  $a^{\phi(n)} \equiv 1 \pmod{n}$ .

# **RSA Algorithm**

Key Generation:

Pick two large primes *p* and *q* Calculate  $n=p^*q$  and  $\phi(n)=(p-1)^*(q-1)$ Pick a random e such that gcd(e,  $\phi(n)$ ) Compute  $d = e^{-1} \pmod{\phi(n)}$  [Use extended GCD algorithm!] Public key is PU=(n,e); Private key is PR=(n,d)

Encryption of message  $M \in \{0,..,n-1\}$ : E(*PU*,*M*) =  $M^e \mod n$ 

Decryption of ciphertext  $C \in \{0,..,n-1\}$ : D(*PR*,*C*) =  $C^d \mod n$ 

| Pick two large primes $p$ and $q$<br>Calculate $n=p^*q$ and $\phi(n)=(p-1)^*(q)$                                                                         | 1)                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pick a random <i>e</i> such that $gcd(e, q$<br>Compute $d = e^{-1} \pmod{\phi(n)}$ [Use<br>Public key is <i>PU</i> =( <i>n</i> , <i>e</i> ); Private key | (n))<br>extended GCD algorithm!]                                                                                                                                                                                                            |
| Encryption of message $M \in \{0,,n-1\}$ :<br>$E(PU,M) = M^e \mod n$<br>Decryption of ciphertext $C \in \{0,,n-1\}$ :<br>$D(PR,C) = C^d \mod n$          | Correctness - easy when $gcd(M,n)=1$<br>$D(PR,E(PU,M)) = (M^{e})^{d} \mod n$<br>$= M^{e^{d}} \mod n$<br>$= (M^{e^{(n)}+1} \mod n$<br>$= (M^{e^{(n)})^{k}} M \mod n$<br>= M<br>Also works when $gcd(M,n)\neq1$ , but slightly harder to show |



## **RSA Example**

```
Simple example:

p = 73, q = 89

n = p^*q = 73^*89 = 6497

\phi(n) = (p-1)^*(q-1) = 72^*88 = 6336

e = 5

d = 5069 [Note: 5*5069 = 25,345 = 4*6336 + 1]
```

Encrypting message M=1234: 1234<sup>5</sup> mod 6497 = 1881

Decrypting: 1881<sup>5069</sup> mod 6497 = 1234

Note: If time allows in class, more examples using Python!

## Status of breaking RSA and factoring

Observation: If we could factor fast, we could break RSA • How: Factor the public modulus n, compute  $\phi(n)$ , and compute d

So factoring is *sufficient* to break RSA - is it *necessary*?

## Status of breaking RSA and factoring

Observation: If we could factor fast, we could break RSA

• How: Factor the public modulus n, compute  $\phi(n)$ , and compute d

So factoring is sufficient to break RSA - is it necessary?

- Answer: no one knows!
- This would be a great result if it could be proved...
- Note: Rabin's PK encryption system is based on a similar concept, and it has been shown that breaking it is equivalent to factoring
   Rabin's scheme isn't used because it is very inefficient - bit-by-bit



## How fast can we factor?

Consider an algorithm with running time  $\Theta\left(2^{c\cdot n^{\alpha}\cdot(\lg n)^{1-\alpha}}
ight)$ 

Algorithm discovery for factoring has generally involved lowering  $\boldsymbol{\alpha}$ 

• a = 1: Brute-force search for factors (exponential time)

•  $\alpha = \frac{1}{2}$ : Quadratic Sieve (1981) - still the best for n<300 bits or so

•  $a = \frac{1}{3}$ : General Number Field Sieve (1990) - best for large numbers

But: Constants also matter (esp. the c in the exponent!)... What are the real-world speeds and consequences?

### Comparable Key Sizes From NIST publication 800-57a

<u>Issue</u>: PK algorithms based on mathematical relationships, and can be broken with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher keys needed to be → How big do keys in a public key system need to be?

|                        | Table 2: Comparable strengths |                                |                         |                    |                      |  |
|------------------------|-------------------------------|--------------------------------|-------------------------|--------------------|----------------------|--|
| From NIST pub 800-57a: | Security<br>Strength          | Symmetric<br>key<br>algorithms | FFC<br>(e.g., DSA, D-H) | IFC<br>(e.g., RSA) | ECC<br>(e.g., ECDSA) |  |
|                        | ≤ 80                          | 2TDEA <sup>21</sup>            | L = 1024<br>N = 160     | k = 1024           | f = 160-223          |  |
|                        | 112                           | 3TDEA                          | L = 2048<br>N = 224     | k = 2048           | f = 224-255          |  |
|                        | 128                           | AES-128                        | L = 3072<br>N = 256     | k = 3072           | f = 256-383          |  |
|                        | 192                           | AES-192                        | L = 7680<br>N = 384     | k = 7680           | f=384-511            |  |
|                        | 256                           | AES-256                        | L = 15360<br>N = 512    | k = 15360          | f=512+               |  |