CSC 580 Cryptography and Computer Security

The RSA Algorithm and Key Size Issues (Section 9.2 and more)

March 15, 2018

Overview

Today:

- Overview/demo of research tools
- The RSA Algorithm key sizes and factoring

Next:

- Read Sections 2.8, 10.1, and 10.2
- Complete ungraded homework 6
- Remember to be working on graded homework 2 (due next Thurs)

First up... some demos of research tools

Tools being demonstrated:

- Zotero (managing papers, citations, etc.)
- LaTeX and paper format templates
- BibTeX

Back to Crypto... Recap of last time

<u>Miller-Rabin Primality Testing</u>: There is an efficient randomized algorithm for testing if large numbers are prime (with very low probability of error).

• So: There is an efficient algorithm for *finding* large random prime numbers

<u>Euler's totient function</u>: $\phi(n)$ = number of integers from 1..n-1 that are relatively prime to n.

<u>Euler's Theorem</u>: For every a and n that are relatively prime (i.e., gcd(a,n)=1), $a^{\phi(n)} \equiv 1 \pmod{n}$.

RSA Algorithm

Key Generation:

```
Pick two large primes p and q
Calculate n=p^*q and \phi(n)=(p-1)^*(q-1)
Pick a random e such that gcd(e, \phi(n))
Compute d=e^{-1} \pmod{\phi(n)} [Use extended GCD algorithm!]
Public key is PU=(n,e); Private key is PR=(n,d)
```

Encryption of message $M \in \{0,..,n-1\}$: $E(PU,M) = M^e \mod n$

Decryption of ciphertext $C \in \{0,...,n-1\}$: $D(PR,C) = C^d \mod n$

RSA Algorithm

Key Generation:

```
Pick two large primes p and q
```

Calculate
$$n=p^*q$$
 and $\phi(n)=(p-1)^*(q-1)$

Pick a random
$$e$$
 such that $gcd(e, \phi(n))$

Compute
$$d = e^{-1} \pmod{\phi(n)}$$
 [Use extended GCD algorithm!]

Public key is
$$PU=(n,e)$$
; Private key is $PR=(n,d)$

```
Encryption of message M \in \{0,..,n-1\}:
 E(PU,M) = M^e \mod n
```

Decryption of ciphertext
$$C \in \{0,..,n-1\}$$
:

$$D(PR,C) = C^d \mod n$$

Correctness - easy when gcd(M,n)=1:

$$D(PR,E(PU,M)) = (M^e)^d \bmod n$$

- $= M^{ed} \mod n$
- $= M^{k\phi(n)+1} \mod n$
- $= (M^{\phi(n)})^k M \mod n$
- = M

Also works when $gcd(M,n)\neq 1$, but slightly harder to show...

RSA Example

Simple example:

```
p = 73, q = 89

n = p*q = 73*89 = 6497

\phi(n) = (p-1)*(q-1) = 72*88 = 6336

e = 5

d = 5069 [Note: 5*5069 = 25,345 = 4*6336 + 1]
```

Encrypting message M=1234:

$$1234^5 \mod 6497 = 1881$$

Decrypting:

$$1881^{5069} \mod 6497 = 1234$$

Note: If time allows in class, more examples using Python!

Status of breaking RSA and factoring

Observation: If we could factor fast, we could break RSA

• How: Factor the public modulus n, compute $\phi(n)$, and compute d

So factoring is *sufficient* to break RSA - is it *necessary*?

Status of breaking RSA and factoring

Observation: If we could factor fast, we could break RSA

• How: Factor the public modulus n, compute $\phi(n)$, and compute d

So factoring is *sufficient* to break RSA - is it *necessary*?

- Answer: no one knows!
- This would be a great result if it could be proved...
- Note: Rabin's PK encryption system is based on a similar concept, and it has been shown that breaking it is equivalent to factoring
 - Rabin's scheme isn't used because it is very inefficient bit-by-bit

<u>What we know</u>

Fast factoring ⇒ Break RSA

What we'd like

Break RSA ⇒ Fast factoring

Why? Look at logical contrapositive:

Can't factor fast ⇒ Can't break RSA

How fast can we factor?

Consider an algorithm with running time $\Theta\left(2^{c\cdot n^{\alpha}\cdot (\lg n)^{1-\alpha}}\right)$

With a = 1: This is $2^{c - n}$ -- pure exponential time

With a = 0: This is $2^{c \square lg(n)} = n^c$ -- pure polynomial time

Algorithm discovery for factoring has generally involved lowering a

- $\alpha = 1$: Brute-force search for factors (exponential time)
- $\alpha = \frac{1}{2}$: Quadratic Sieve (1981) still the best for n<300 bits or so
- $\alpha = \frac{1}{3}$: General Number Field Sieve (1990) best for large numbers

But: Constants also matter (esp. the c in the exponent!)... What are the real-world speeds and consequences?

Comparable Key Sizes

From NIST publication 800-57a

<u>Issue</u>: PK algorithms based on mathematical relationships, and can be broken with algorithms that are faster than brute force.

We spent time getting a feel for how big symmetric cipher keys needed to be

→ How big do keys in a public key system need to be?

Table 2: Comparable strengths

From NIST pub 800-57a:

Security Strength	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)
≤ 80	2TDEA ²¹	L = 1024 $N = 160$	k = 1024	f = 160-223
112	3TDEA	L = 2048 $N = 224$	k = 2048	f = 224-255
128	AES-128	L = 3072 $N = 256$	k = 3072	f = 256-383
192	AES-192	L = 7680 $N = 384$	k = 7680	f = 384-511
256	AES-256	L = 15360 $N = 512$	k = 15360	f = 512+