CSC 580
Cryptography and Computer Security

Message Authentication Codes
(Sections 12.1-12.5)

March 29, 2018

Overview

Today:
e Quiz over HW7 material

e Discuss message authentication codes

Next:
e Complete ungraded HW 8
e Read Chapter 12.7-12.9

e Project Progress Report due Tuesday!

Message Authentication Requirements
From Textbook, Section 12.1

Attacks on network communication include

Disclosure

, , Confidentiality issues
Traffic analysis } 4

T

Masquerade

Content modification

Sequence modification

Timing modification (incl replay)
-

—— Message Authentication

Source repudiation . |
Destination repudiation Digital Signatures

ON AW D=

Message Authentication Requirements
From Textbook, Section 12.1

Attacks on network communication include

ON AW D=

D|SC|.OSU"e . Confidentiality issues
Traffic analysis

Masquerade

Content modification

Sequence modification

Timing modification (incl replay)
-

—— Message Authentication

Source repudiation . |
Destination repudiation Digital Signatures

Basics: Message authentication is a procedure to verify that
received messages come from the alleged source and have not
been altered. (By including tamper-proof sequence numbers
and timestamps, can protect other properties.)

Using Symmetric Encryption

Consider using a non-malleable cipher

If decryption is “sensible” then most likely:

e Message wasn’t tampered with (non-malleable)
e Source was desired sender (only they know the key)

Problem: What does “sensible” decryption mean?
And what if message can be arbitrary binary data?

Can add some structure or redundancy and look for on decryption

But -- is there a more direct solution?

Authenticator: Concept

Messaqge Authenticator

Send the army to ... leaving at 10:30am. 7¢91ad850b513

Authenticator computed from message
Message and authenticator both transmitted
Receiver recomputes from message - must match!

Question: Will a cryptographic hash function work?
Specifically: How is this related to second preimage resistance?

Authenticator: Concept

Messaqge Authenticator

Send the army to ... leaving at 10:30am. 7¢91ad850b513

Authenticator computed from message
Message and authenticator both transmitted
Receiver recomputes from message - must match!

Question: Will a cryptographic hash function work?
Specifically: How is this related to second preimage resistance?

Attacker can’t replace message, using same authenticator

But: if authenticator is a known hash function, can compute a new
authenticator and replace the original.

Authenticator: Concept

Messaqge Authenticator

Send the army to ... leaving at 10:30am. 7¢91ad850b513

Authenticator computed from message
Message and authenticator both transmitted
Receiver recomputes from message - must match!

Question: Will a cryptographic hash function work?
Specifically: How is this related to second preimage resistance?

Attacker can’t replace message, using same authenticator

But: if authenticator is a known hash function, can compute a new
authenticator and replace the original.

Sender and receiver share secret — Then attacker can’t compute!
If only sender and receiver know secret, authenticates source too

Message Authentication Codes

A first, naive attempt:

For message made of up n blocks M., M, ..., M :
1. Calculate S=M, e M, ...e M_
2. Calculate tag T = E(K,S) using a non-malleable cipher

Question 1: Can you find any other message with same tag?

Message Authentication Codes

A first, naive attempt:

For message made of up n blocks M., M, ..., M :
1. Calculate S=M, e M, ...e M_
2. Calculate tag T = E(K,S) using a non-malleable cipher

Question 1: Can you find any other message with same tag?
XOR is commutative and associative, so just rearrange blocks

Question 2: Can you construct a message mostly of your own
choosing with the same tag?

Message Authentication Codes

A first, naive attempt:

For message made of up n blocks M., M, ..., M :
1. Calculate S=M, e M, ...e M_
2. Calculate tag T = E(K,S) using a non-malleable cipher

Question 1: Can you find any other message with same tag?
XOR is commutative and associative, so just rearrange blocks

Question 2: Can you construct a message mostly of your own
choosing with the same tag?

For any n-1 block forgery F1, F2, Fn_1, compute
Fn=F1@F2@...@Fn_1@S,
soF,eF,e...eF oF =§

Message Authentication Codes

Function MAC: K xM — {0,1}"

T

Keyspace Message space Authenticator (or “tag’)

Important properties:
e Given M and T = MAC(K,M), can’t find M’ with MAC(K,M’) = MAC(K,M)
o Like second preimage resistance

e Given M and MAC(K,M), can’t calculate K
o Similar to preimage resistance (one-way)

o Brute force attack takes time | K |/2 on average
e Given M and T = MAC(K,M), can’t find M’ and T’ s.t. T=MAC(K,M’)

So... was sent by someone who knows K, and M hasn’t been tampered with

Formal Security of MACs

Consider: What is best algorithm to take a set of message/tag pairs,
generated with an unknown key K:

{(M,, MAC(K,M,)) , (M,, MAC(K,M,)), ... , (M_, MAC(K,M)) }

Security challenge: Find a pair (M, T) where
1. M&{M,M,,....M} (i.e.,, Mhasnt been seen before)

2. T=MAC(K, M)

(M,T) is called a forgery
In a real attack, probably want M to be chosen or at least meaningful

In formal model, tilt advantage toward attacker: M can be anything
e This is called an existential forgery
e A MAC that is secure against this is called existentially unforgeable

Formal Security of MACs

Next: Where does the set of known message/tag pairs come from?

Some options:

e Provided or random messages (think: captured communications)
e Attacker picks all n messages M,, M,, ..., M_then gets all tags
e Attacker picks M, and gets T, then picks M, and gets T, etc.

Each option gives attacker more power than previous option.

Design against strongest possible adversary - the last option

e This is called an adaptive chosen message attack
e So best possible goal: existential unforgeability against adaptive chosen
message attack (EUE-CMA)

e Note: More commonly used as security goal for signatures, but same idea

Making a MAC from a Hash Function

Insecure first attempt

Idea: Need a hash function with a secret key, so start with a standard
hash function

Attempt 1 - Insecure
(but a lot of people do this anyway - don’t be one of those people)

|ldea: Concatenate key and message, and hash: T = H(K || M)

Can’t figure out key if H is preimage resistant. Can'’t pick different M (for
same T) if H is collision resistant.

So... what’s the problem?

Making a MAC from a Hash Function

Insecure first attempt

Recall Merkle-Damgard hash structure - 3 block example
(used by SHA1, SHAZ2 family (SHA256, SHA512, etc.)

K M M, M,

Lalbalply...

ggfg:>f:>f:>f:>f:>

Making a MAC from a Hash Function

Insecure first attempt

Recall Merkle-Damgard hash structure - 3 block example
(used by SHA1, SHAZ2 family (SHA256, SHA512, etc.)

K

L

L

L

L

Output (T)

ggfg:>f:>f:>f:>f:> E—

y Then add a
4 4th block!
[g\
Output (T’)
f
——>
/

Making a MAC from a Hash Function

Insecure first attempt

Recall Merkle-Damgard hash structure - 3 block example
(used by SHA1, SHAZ2 family (SHA256, SHA512, etc.)

Initial
State

L

=)

>

f

L

—)

/

>

f

L

—)

/

>

f

L

)

/

>

f

M4
Output (T)
i) SR ee—

/

Then add a
4th block!

>

f

So: Given M., M,, M,, and T = MAC(K,M, ||M,||M,)
-> Can pick M, and compute T° = (T, M,) = MAC(K,M.||M,|[M,||M,) - forgery!

This is called an extension attack
Problem with any Merkle-Damgard hash function used this way
Is not problem with SHA3!

/

Output (T’)

HMAC - The Right Way

K* ipad
—> -
b bits b bits
YO Yl L] L] L]
jy—rbits I
+ opa d "n bits
L J C_JH(S; | M)
F b bits Pad to b bits
Y Y
So
L Hash
n bits
|:l HMAC(K, M)

Figure 12.5 HMAC Structure

b bits

Key point:

Don’t know H(S; || M) so
can’t extend message!

HMAC - Proven Security!

Theorem (informally stated): If H is a Merkle-Damgard style hash
function in which the compression function is a pseudorandom function
(PRF), then HMAC using H is a pseudorandom function.

Proved in: Mihir Bellare. “New Proofs for NMAC and HMAC: Security
without Collision-Resistance,” 2006 Conference on Advances in
Cryptology (CRYPTO ‘06).

