
CSC 580
Cryptography and Computer Security

Message Authentication Codes
(Sections 12.1-12.5)

March 29, 2018

Overview

Today:
● Quiz over HW7 material

● Discuss message authentication codes

Next:
● Complete ungraded HW 8

● Read Chapter 12.7-12.9

● Project Progress Report due Tuesday!

Message Authentication Requirements
From Textbook, Section 12.1

Attacks on network communication include

1. Disclosure
2. Traffic analysis

3. Masquerade
4. Content modification
5. Sequence modification
6. Timing modification (incl replay)

7. Source repudiation
8. Destination repudiation

Confidentiality issues

Message Authentication

Digital Signatures

Message Authentication Requirements
From Textbook, Section 12.1

Attacks on network communication include

1. Disclosure
2. Traffic analysis

3. Masquerade
4. Content modification
5. Sequence modification
6. Timing modification (incl replay)

7. Source repudiation
8. Destination repudiation

Confidentiality issues

Message Authentication

Digital Signatures

Basics: Message authentication is a procedure to verify that
received messages come from the alleged source and have not
been altered. (By including tamper-proof sequence numbers
and timestamps, can protect other properties.)

Using Symmetric Encryption
Consider using a non-malleable cipher

If decryption is “sensible” then most likely:
● Message wasn’t tampered with (non-malleable)
● Source was desired sender (only they know the key)

Problem: What does “sensible” decryption mean?
And what if message can be arbitrary binary data?

Can add some structure or redundancy and look for on decryption

But -- is there a more direct solution?

Authenticator: Concept

Send the army to … leaving at 10:30am. 7c91ad850b513

Message Authenticator

Authenticator computed from message
Message and authenticator both transmitted
Receiver recomputes from message - must match!

Question: Will a cryptographic hash function work?
Specifically: How is this related to second preimage resistance?

Authenticator: Concept

Send the army to … leaving at 10:30am. 7c91ad850b513

Message Authenticator

Authenticator computed from message
Message and authenticator both transmitted
Receiver recomputes from message - must match!

Question: Will a cryptographic hash function work?
Specifically: How is this related to second preimage resistance?

Attacker can’t replace message, using same authenticator

But: if authenticator is a known hash function, can compute a new
authenticator and replace the original.

Authenticator: Concept

Send the army to … leaving at 10:30am. 7c91ad850b513

Message Authenticator

Authenticator computed from message
Message and authenticator both transmitted
Receiver recomputes from message - must match!

Question: Will a cryptographic hash function work?
Specifically: How is this related to second preimage resistance?

Attacker can’t replace message, using same authenticator

But: if authenticator is a known hash function, can compute a new
authenticator and replace the original.

Sender and receiver share secret → Then attacker can’t compute!
If only sender and receiver know secret, authenticates source too

Message Authentication Codes

A first, naive attempt:

For message made of up n blocks M1, M2, …, Mn:
1. Calculate S = M1 ⊕ M2 ⊕ … ⊕ Mn
2. Calculate tag T = E(K,S) using a non-malleable cipher

Question 1: Can you find any other message with same tag?

Message Authentication Codes

A first, naive attempt:

For message made of up n blocks M1, M2, …, Mn:
1. Calculate S = M1 ⊕ M2 ⊕ … ⊕ Mn
2. Calculate tag T = E(K,S) using a non-malleable cipher

Question 1: Can you find any other message with same tag?
XOR is commutative and associative, so just rearrange blocks

Question 2: Can you construct a message mostly of your own
choosing with the same tag?

Message Authentication Codes

A first, naive attempt:

For message made of up n blocks M1, M2, …, Mn:
1. Calculate S = M1 ⊕ M2 ⊕ … ⊕ Mn
2. Calculate tag T = E(K,S) using a non-malleable cipher

Question 1: Can you find any other message with same tag?
XOR is commutative and associative, so just rearrange blocks

Question 2: Can you construct a message mostly of your own
choosing with the same tag?

For any n-1 block forgery F1, F2, …, Fn-1, compute
Fn = F1 ⊕ F2 ⊕ … ⊕ Fn-1 ⊕ S,
so F1 ⊕ F2 ⊕ … ⊕ Fn-1 ⊕ Fn = S

Message Authentication Codes

Function MAC: K ⨯M → {0,1}h

Important properties:
● Given M and T = MAC(K,M), can’t find M’ with MAC(K,M’) = MAC(K,M)

○ Like second preimage resistance

● Given M and MAC(K,M), can’t calculate K
○ Similar to preimage resistance (one-way)
○ Brute force attack takes time |K |/2 on average

● Given M and T = MAC(K,M), can’t find M’ and T’ s.t. T’=MAC(K,M’)

So… was sent by someone who knows K, and M hasn’t been tampered with

Keyspace Message space Authenticator (or “tag”)

Formal Security of MACs
Consider: What is best algorithm to take a set of message/tag pairs,
generated with an unknown key K:

{ (M1, MAC(K,M1)) , (M2, MAC(K,M2)), … , (Mn, MAC(K,Mn)) }

Security challenge: Find a pair (M, T) where
1. M ∉ {M1, M2, …, Mn} (i.e., M hasn’t been seen before)

2. T = MAC(K, M)

(M,T) is called a forgery

In a real attack, probably want M to be chosen or at least meaningful

In formal model, tilt advantage toward attacker: M can be anything
● This is called an existential forgery
● A MAC that is secure against this is called existentially unforgeable

Formal Security of MACs
Next: Where does the set of known message/tag pairs come from?

Some options:
● Provided or random messages (think: captured communications)
● Attacker picks all n messages M1, M2, …, Mn then gets all tags
● Attacker picks M1 and gets T1, then picks M2 and gets T2, etc.

Each option gives attacker more power than previous option.

Design against strongest possible adversary - the last option
● This is called an adaptive chosen message attack
● So best possible goal: existential unforgeability against adaptive chosen

message attack (EUF-CMA)

● Note: More commonly used as security goal for signatures, but same idea

Making a MAC from a Hash Function
Insecure first attempt

Idea: Need a hash function with a secret key, so start with a standard
hash function

Attempt 1 - Insecure
(but a lot of people do this anyway - don’t be one of those people)

Idea: Concatenate key and message, and hash: T = H(K || M)

Can’t figure out key if H is preimage resistant. Can’t pick different M (for
same T) if H is collision resistant.

So… what’s the problem?

Making a MAC from a Hash Function
Insecure first attempt

Recall Merkle-Damgard hash structure - 3 block example
 (used by SHA1, SHA2 family (SHA256, SHA512, etc.)

f f f f
Output (T)

Initial
State

K M1 M2 M3

Making a MAC from a Hash Function
Insecure first attempt

Recall Merkle-Damgard hash structure - 3 block example
 (used by SHA1, SHA2 family (SHA256, SHA512, etc.)

f f f f
Output (T)

Initial
State

K M1 M2 M3

f Output (T’)

M4
Then add a
4th block!

Making a MAC from a Hash Function
Insecure first attempt

Recall Merkle-Damgard hash structure - 3 block example
 (used by SHA1, SHA2 family (SHA256, SHA512, etc.)

f f f f
Output (T)

Initial
State

K M1 M2 M3

f Output (T’)

M4
Then add a
4th block!

So: Given M1, M2, M3, and T = MAC(K,M1||M2||M3)
➔ Can pick M4 and compute T’ = f(T, M4) = MAC(K,M1||M2||M3||M4) - forgery!

This is called an extension attack
● Problem with any Merkle-Damgard hash function used this way
● Is not problem with SHA3!

HMAC - The Right Way

Key point:

Don’t know H(Si || M) so
can’t extend message!

HMAC - Proven Security!

Theorem (informally stated): If H is a Merkle-Damgard style hash
function in which the compression function is a pseudorandom function
(PRF), then HMAC using H is a pseudorandom function.

Proved in: Mihir Bellare. “New Proofs for NMAC and HMAC: Security
without Collision-Resistance,” 2006 Conference on Advances in
Cryptology (CRYPTO ‘06).

