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Digital Signatures
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Digital Signatures - Idea
Digital signature idea
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Digital Signatures - How it Works

Signature scheme consists of three algorithms:
● Generate keypair: Given keylength (security param) gives (PU,PR)
● Sign: Takes message M and PR, and produces signature sig
● Verify: Takes M, PU, and sig, and outputs true (verified) or false

Like public key encryption, sign/verify operations are slow!
● So don’t run entire (possibly long) message through functions
● First hash, then sign H(M)

Is this combination secure? Yes!  Why: Assume adversary knows valid 
sigs (M1,sig1), (M2,sig2), …, (Mn,sign) and can find a forgery (M,sig).
● If H(M) = H(Mi ) for some Mi  →  found a collision in H, should be impossible!
● If H(M) ≠ H(Mi ) for all Mi  →  then (H(M),sig) is a forger for sig scheme

Digital Signatures - Security Model
AS(PU)
   // Arbitrary precomputation
   while (not done):
      m = // compute query message
      s = S(m)
      Known = Known ∪ (m,s)
      // More computing
   (m’, s’) = // compute claimed forgery
   Return (m’,s’)

Adversary wins if there is no pair (m’,x) in Known and Verify(m’,s’) = true

Note:
● Adversary picks oracle query messages, and can adapt as it learns

○ That makes this an “adaptive chosen message” attack
● Any valid signature wins - only restriction is that m’ hasn’t been queried

○ That makes this an “existential forgery attack”

Security is Existentially Unforgeable under Adaptive Chosen Message Attack (EUF-CMA)

ElGamal
As in Diffie-Hellman, let p be a prime and g be a primitive root

Key Generation
1. Pick random PR ∈ {2, …, p-1}
2. Compute PU = gPR mod p
3. Private (signing) key is PR ; Public (verification) key is PU

Signing a message M
1. Pick random k ∈ {2, …, p-1} that is relative prime to (p-1)
2. Compute r = gk mod p
3. Compute k -1 mod (p-1)
4. Compute s = k -1 (H(M) - PR*r) mod (p-1)
5. Signature is the pair (r,s)

Verifying a signature (r,s) on message M:
1. Check if gH(M) ≡ PU r * rs (mod p)    [accept if true, reject if false]

Note similarity to 
Diffie-Hellman
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Observation: Expensive computations
(powering and inverse), but they don’t 
depend on M - precompute!

Why does this work for valid sigs?
Important math fact: If x ≡ y (mod p-1) then ax ≡ ay (mod p).

Proof: If x ≡ y (mod p-1) then there exists a k such that x-y = k*(p-1), so x = 
k*(p-1)+y. Then ax = ak*(p-1)+y = ak*(p-1)*ay = (ap-1)k*ay. By Fermat’s Little Theorem, 
we know that ap-1 mod p = 1, so (ap-1)k*ay mod p = ay. Therefore ax ≡ ay (mod p).

What this means: To simplify aformula, can simplify formula mod (p-1).

Applying this to ElGamal formulas:

Consider PU r * r s ≡ gPR*r gk*s ≡ gPR*r+k*s (mod p), and simplify exponent mod (p-1):

PR*r + k*s ≡ PR*r + k*k-1 (H(M) - PR*r) ≡ PR*r + H(M) - PR*r ≡ H(M) mod (p-1)

Therefore, PU r * rs ≡ gH(M) (mod p)

PU = gPR mod p

s = k-1 (H(M) - PR*r) mod (p-1)

DSA - Digital Signature Algorithm
Compared to ElGamal

ElGamal
Let q = p-1

Key Generation
1. Pick random PR ∈ {2, …, q}
2. Compute PU = gPR mod p
3. Private key is PR ; Public key is PU

Signing a message M
1. Pick rand k ∈ {2, …, q} with 

gcd(k,q)=1
2. Compute r = gk mod p
3. Compute k-1 mod q
4. Compute s = k-1 (H(M) - PR*r) mod q
5. Signature is the pair (r,s)

Verifying signature (r,s) on message M:
1. Check if gH(M) ≡ PU r * r s (mod p) 

DSA
q is prime such that q|p-1, and let g be a 
value with order q [ gq ≡ 1 (mod q) ]

Key Generation
1. Pick random PR ∈ {2, …, q}
2. Compute PU = gPR mod p
3. Private key is PR ; Public key is PU

Signing a message M
1. Pick rand k ∈ {2, …, q-1} 
2. Compute r = (gk mod p) mod q
3. Compute k-1 mod q
4. Compute s = k-1 (H(M) + PR*r) mod q
5. Signature is the pair (r,s)

Verifying signature (r,s) on message M:
1. Compute w = s -1 mod q
2. Check if r ≡ (PU r*w * g H(M)*w mod p) mod q



DSA - The Digital Signature Algorithm
History, Parameters, etc.

One component of NIST’s Digital Signature Standard (DSS)
● DSS was adopted in 1993
● DSA dates back to 1991
● One goal: Only support integrity - not confidentiality

○ Why? Export restrictions!
○ Alternative signature scheme: RSA - also an encryption algorithm

Key and Parameter Sizes:
● ElGamal is similar to Diffie-Hellman modulus size (N = number of bits)

○ 1024-bit p was OK in 1990s - now suggest 2048-bit or 3072-bit
○ Signature two N-bit values (e.g., two 1024-bit values)

● DSA uses a computationally-hard subgroup
○ In 1990’s q was 160 bits (matching SHA1!)
○ Signature was then two 160-bit values  (more compact than ElGamal)
○ Now suggest q being 256 bits

Reminder - RSA Algorithm
From Public Key Encryption chapter

Key Generation:
Pick two large primes p and q
Calculate n=p*q and ᶰ(n)=(p-1)*(q-1)
Pick a random e such that gcd(e, ᶰ(n))
Compute d = e-1 (mod ᶰ(n))   [Use extended GCD algorithm!]
Public key is PU=(n,e) ; Private key is PR=(n,d)

Encryption of message M ∈ {0,..,n-1}:
E(PU,M) = Me mod n

Decryption of ciphertext C ∈ {0,..,n-1}:
D(PR,C) = Cd mod n

Correctness - easy when gcd(M,n)=1:

D(PR,E(PU,M)) = (Me)d mod n
     = Med mod n
     = Mkᶰ(n)+1 mod n
     = (Mᶰ(n))k M mod n
     = M

Also works when gcd(M,n)≠1, but 
slightly harder to show...

RSA Algorithm for Signatures
“Textbook algorithm” - not how it’s really done

Key Generation:
Pick two large primes p and q
Calculate n=p*q and ᶰ(n)=(p-1)*(q-1)
Pick a random v such that gcd(v, ᶰ(n))
Compute s = v-1 (mod ᶰ(n))   [Use extended GCD algorithm!]
Public key is PU=(n,v) ; Private key is PR=(n,s)

Signing message M ∈ {0,..,n-1}:
Sign(PR,M) = Ms mod n

Verification of signature σ ∈ {0,..,n-1}:
Verify(PU,M,σ): Check if M = σv mod n



RSA-PSS (Probabilistic Signature Scheme)
How it’s really done - with padding (similar to OAEP for encryption)

Invented (and proved secure) 
by Bellare and Rogaway
● Also inventors of OAEP and 

HMAC

Forging sigs w/ “textbook RSA”
● Pick random sig R
● Let message M=Rv mod N
● (M,R) is valid sig pair!

Modifying sigs (“blinding”)
● Given σ = Ms mod N
● Compute X = Rv mod N
● Let M’ = X*M mod N
● Let σ’ = R*σ mod N
● Note (σ’)v = Rvσ’v = X*M = M’ 

(mod N)


