
CSC 580
Cryptography and Computer Security

Digital Signatures
(Sections 13.1, 13.2, 13.4, 13.6)

Digital Signatures - Idea
Public key encryption idea

aGxU4N<:1EvxxYEL4}
0h7dP6]%<

Pay with
1234 5678 9012 3456

Network
Interface

Network
Interface

Encryption
Function

Pay with
1234 5678 9012 3456

Decryption
Function

Anyone can do this
(uses “Public” key)

Only person with
decryption key can do

this (“Private” key)

Digital Signatures - Idea
Digital signature idea

I will give you $200

Signed: aGxU4N<:1E
vxxYEL4}0h7dP6]%<

I will give you $200

✔ Verified signature!

Network
Interface

Network
Interface

Verification
Function

I will give you $200

Signing
Function

Anyone can do this
(uses “Public” key)

Only person with
signing key can do
this (“Private” key)

Digital Signatures - How it Works

Signature scheme consists of three algorithms:
● Generate keypair: Given keylength (security param) gives (PU,PR)
● Sign: Takes message M and PR, and produces signature sig
● Verify: Takes M, PU, and sig, and outputs true (verified) or false

Like public key encryption, sign/verify operations are slow!
● So don’t run entire (possibly long) message through functions
● First hash, then sign H(M)

Is this combination secure? Yes! Why: Assume adversary knows valid
sigs (M1,sig1), (M2,sig2), …, (Mn,sign) and can find a forgery (M,sig).
● If H(M) = H(Mi) for some Mi → found a collision in H, should be impossible!
● If H(M) ≠ H(Mi) for all Mi → then (H(M),sig) is a forger for sig scheme

Digital Signatures - Security Model
AS(PU)
 // Arbitrary precomputation
 while (not done):
 m = // compute query message
 s = S(m)
 Known = Known ∪ (m,s)
 // More computing
 (m’, s’) = // compute claimed forgery
 Return (m’,s’)

Adversary wins if there is no pair (m’,x) in Known and Verify(m’,s’) = true

Note:
● Adversary picks oracle query messages, and can adapt as it learns

○ That makes this an “adaptive chosen message” attack
● Any valid signature wins - only restriction is that m’ hasn’t been queried

○ That makes this an “existential forgery attack”

Security is Existentially Unforgeable under Adaptive Chosen Message Attack (EUF-CMA)

ElGamal
As in Diffie-Hellman, let p be a prime and g be a primitive root

Key Generation
1. Pick random PR ∈ {2, …, p-1}
2. Compute PU = gPR mod p
3. Private (signing) key is PR ; Public (verification) key is PU

Signing a message M
1. Pick random k ∈ {2, …, p-1} that is relative prime to (p-1)
2. Compute r = gk mod p
3. Compute k -1 mod (p-1)
4. Compute s = k -1 (H(M) - PR*r) mod (p-1)
5. Signature is the pair (r,s)

Verifying a signature (r,s) on message M:
1. Check if gH(M) ≡ PU r * rs (mod p) [accept if true, reject if false]

Note similarity to
Diffie-Hellman

ElGamal
As in Diffie-Hellman, let p be a prime and g be a primitive root

Key Generation
1. Pick random PR ∈ {2, …, p-1}
2. Compute PU = gPR mod p
3. Private (signing) key is PR ; Public (verification) key is PU

Signing a message M
1. Pick random k ∈ {2, …, p-1} that is relative prime to (p-1)
2. Compute r = gk mod p
3. Compute k -1 mod (p-1)
4. Compute s = k -1 (H(M) - PR*r) mod (p-1)
5. Signature is the pair (r,s)

Verifying a signature (r,s) on message M:
1. Check if gH(M) ≡ PU r * rs (mod p) [accept if true, reject if false]

Note similarity to
Diffie-Hellman

Observation: Expensive computations
(powering and inverse), but they don’t
depend on M - precompute!

Why does this work for valid sigs?
Important math fact: If x ≡ y (mod p-1) then ax ≡ ay (mod p).

Proof: If x ≡ y (mod p-1) then there exists a k such that x-y = k*(p-1), so x =
k*(p-1)+y. Then ax = ak*(p-1)+y = ak*(p-1)*ay = (ap-1)k*ay. By Fermat’s Little Theorem,
we know that ap-1 mod p = 1, so (ap-1)k*ay mod p = ay. Therefore ax ≡ ay (mod p).

What this means: To simplify aformula, can simplify formula mod (p-1).

Applying this to ElGamal formulas:

Consider PU r * r s ≡ gPR*r gk*s ≡ gPR*r+k*s (mod p), and simplify exponent mod (p-1):

PR*r + k*s ≡ PR*r + k*k-1 (H(M) - PR*r) ≡ PR*r + H(M) - PR*r ≡ H(M) mod (p-1)

Therefore, PU r * rs ≡ gH(M) (mod p)

PU = gPR mod p

s = k-1 (H(M) - PR*r) mod (p-1)

DSA - Digital Signature Algorithm
Compared to ElGamal

ElGamal
Let q = p-1

Key Generation
1. Pick random PR ∈ {2, …, q}
2. Compute PU = gPR mod p
3. Private key is PR ; Public key is PU

Signing a message M
1. Pick rand k ∈ {2, …, q} with

gcd(k,q)=1
2. Compute r = gk mod p
3. Compute k-1 mod q
4. Compute s = k-1 (H(M) - PR*r) mod q
5. Signature is the pair (r,s)

Verifying signature (r,s) on message M:
1. Check if gH(M) ≡ PU r * r s (mod p)

DSA
q is prime such that q|p-1, and let g be a
value with order q [gq ≡ 1 (mod q)]

Key Generation
1. Pick random PR ∈ {2, …, q}
2. Compute PU = gPR mod p
3. Private key is PR ; Public key is PU

Signing a message M
1. Pick rand k ∈ {2, …, q-1}
2. Compute r = (gk mod p) mod q
3. Compute k-1 mod q
4. Compute s = k-1 (H(M) + PR*r) mod q
5. Signature is the pair (r,s)

Verifying signature (r,s) on message M:
1. Compute w = s -1 mod q
2. Check if r ≡ (PU r*w * g H(M)*w mod p) mod q

DSA - The Digital Signature Algorithm
History, Parameters, etc.

One component of NIST’s Digital Signature Standard (DSS)
● DSS was adopted in 1993
● DSA dates back to 1991
● One goal: Only support integrity - not confidentiality

○ Why? Export restrictions!
○ Alternative signature scheme: RSA - also an encryption algorithm

Key and Parameter Sizes:
● ElGamal is similar to Diffie-Hellman modulus size (N = number of bits)

○ 1024-bit p was OK in 1990s - now suggest 2048-bit or 3072-bit
○ Signature two N-bit values (e.g., two 1024-bit values)

● DSA uses a computationally-hard subgroup
○ In 1990’s q was 160 bits (matching SHA1!)
○ Signature was then two 160-bit values (more compact than ElGamal)
○ Now suggest q being 256 bits

Reminder - RSA Algorithm
From Public Key Encryption chapter

Key Generation:
Pick two large primes p and q
Calculate n=p*q and ᶰ(n)=(p-1)*(q-1)
Pick a random e such that gcd(e, ᶰ(n))
Compute d = e-1 (mod ᶰ(n)) [Use extended GCD algorithm!]
Public key is PU=(n,e) ; Private key is PR=(n,d)

Encryption of message M ∈ {0,..,n-1}:
E(PU,M) = Me mod n

Decryption of ciphertext C ∈ {0,..,n-1}:
D(PR,C) = Cd mod n

Correctness - easy when gcd(M,n)=1:

D(PR,E(PU,M)) = (Me)d mod n
 = Med mod n
 = Mkᶰ(n)+1 mod n
 = (Mᶰ(n))k M mod n
 = M

Also works when gcd(M,n)≠1, but
slightly harder to show...

RSA Algorithm for Signatures
“Textbook algorithm” - not how it’s really done

Key Generation:
Pick two large primes p and q
Calculate n=p*q and ᶰ(n)=(p-1)*(q-1)
Pick a random v such that gcd(v, ᶰ(n))
Compute s = v-1 (mod ᶰ(n)) [Use extended GCD algorithm!]
Public key is PU=(n,v) ; Private key is PR=(n,s)

Signing message M ∈ {0,..,n-1}:
Sign(PR,M) = Ms mod n

Verification of signature σ ∈ {0,..,n-1}:
Verify(PU,M,σ): Check if M = σv mod n

RSA-PSS (Probabilistic Signature Scheme)
How it’s really done - with padding (similar to OAEP for encryption)

Invented (and proved secure)
by Bellare and Rogaway
● Also inventors of OAEP and

HMAC

Forging sigs w/ “textbook RSA”
● Pick random sig R
● Let message M=Rv mod N
● (M,R) is valid sig pair!

Modifying sigs (“blinding”)
● Given σ = Ms mod N
● Compute X = Rv mod N
● Let M’ = X*M mod N
● Let σ’ = R*σ mod N
● Note (σ’)v = Rvσ’v = X*M = M’

(mod N)

