CSC 580
Cryptography and Computer Security

Digital Signatures
(Sections 13.1, 13.2, 13.4, 13.6)

Digital Signatures - Idea
Public key encryption idea

Network

Network aGxU4N<:1EvxxYEL4}
Interface Oh7dP6]%< Interface

N

Decryption
P Funcion

N

Pay with
1234 5678 9012 3456

Anyone can do this
(uses “Public” key)

Encryption
Function

Decryption Key

Only person with

decryption key can do
this (“Private” key)

Encryption Key

y with

1234 5678 9012 3456

Digital Signatures - Idea

Digital signature idea

Network
Interface

Verification
Function

o

will give you $200

Verification Key

\Verified signature!

| will give you $200

Signed: aGxU4N<:1E
vxxXYEL4}0h7dP6]%<

Anyone can do this

(uses “Public” key)

Only person with
signing key can do
this (“Private” key)

Network
Interface

Signing
Function

8)

| will give you $200

Signing Key

Digital Signatures - How it Works

Signature scheme consists of three algorithms:

e Generate keypair. Given keylength (security param) gives (PU,PR)
e JSign: Takes message M and PR, and produces signature sig

e Verify: Takes M, PU, and sig, and outputs true (verified) or false

Like public key encryption, sign/verify operations are slow!

e So don’t run entire (possibly long) message through functions
e First hash, then sign H(M)

Is this combination secure? Yes! Why: Assume adversary knows valid
sigs (M,,sig,), (M,,sig,), ..., (M _,sig) and can find a forgery (M,sig).
e If H(M)=H(M.) for some M. — found a collision in H, should be impossible!
o If H(M)# H(M,) forall M. — then (H(M),sig) is a forger for sig scheme

Digital Signatures - Security Model

AS(PU)
// Arbitrary precomputation
while (not done):
m = // compute query message
s = S(m)
Known = Known U (m,s)
// More computing
(m’, s’) = // compute claimed forgery
Return (m’,s”’)

Adversary wins if there is no pair (m’,x) in Known and Verify(m’,s”’) = true

Note:
e Adversary picks oracle query messages, and can adapt as it learns

o That makes this an “adaptive chosen message” attack

e Any valid signature wins - only restriction is that m’ hasn’t been queried
o That makes this an “existential forgery attack”

Security is Existentially Unforgeable under Adaptive Chosen Message Attack (EUF-CMA)

ElGamal

As in Diffie-Hellman, let p be a prime and g be a primitive root

Key Generation Note similarity to
1. Pick random PR € {2, ..., p-1} Diffie-Hellman

2. Compute PU =g mod p
3. Private (signing) key is PR ; Public (verification) key is PU

Signing a message M

Pick random k € {2, ..., p-1} that is relative prime to (p-1)
Compute r=g¥ mod p

Compute k' mod (p-1)

Compute s = k' (H(M) - PR*r) mod (p-1)

Signature is the pair (r,s)

a0~

Verifying a signature (r,s) on message M:
1. Check if g"™ = PU" * r¥(mod p) [accept if true, reject if false]

ElGamal

As in Diffie-Hellman, let p be a prime and g be a primitive root

Key Generation Note similarity to
1. Pickrandom PR € {2, ..., p-1} Diffie-Hellman

2. Compute PU =g mod p
3. Private (signing) key is PR ; Public (verification) key is PU

Signing a message M
Pick random k € {2, ..., p-1} that is relative prime to (p-1)

<
<<

Compute r=g¥ mod p
Compute k' mod (p-1) Observation: Expensive computations
Compute s = k™' (H(M) - PR*r) mod (p-1) (powering and inverse), but they don’t
Signature is the pair (r,s) depend on M - precompuite!

a0~

Verifying a signature (r,s) on message M:
1. Check if g"™ = PU" * r¥(mod p) [accept if true, reject if false]

Why does this work for valid sigs?

Important math fact: If x = y (mod p-1) then &* = @’ (mod p).

Proof: If x = y (mod p-1) then there exists a k such that x-y = k*(p-1), so x =
k*(p-1)+y. Then a* = g’ Py = gkle-N*gy = (gP-1Yk*gY. By Fermat's Little Theorem,
we know that @' mod p = 1, so (a”")**a¥ mod p = a&’. Therefore a* = @’ (mod p).

What this means: To simplify a©™@ can simplify formula mod (p-1).

Applying this to EIGamal formulas: PU = g"R mod p
s =k (H(M) - PR*r) mod (p-1)

Consider PU" * rs= gPR" gk's = gPR™S (mod p), and simplify exponent mod (p-1):
PR*r + k*s = PR*r + k*k' (H(M) - PR*r) = PR*r + H(M) - PR*r = H(M) mod (p-1)

Therefore, PU" * r° = g"™) (mod p)

DSA - Digital Signature Algorithm

Compared to EIGamal

ElGamal DSA

Let g = p-1 q is prime such that g|p-1, and let g be a

value with order g [g? =1 (mod q)]

Key Generation Key Generation

1. Pickrandom PR € {2, ..., g} 1. Pickrandom PR € {2, ..., g}

2. Compute PU = g"*" mod p 2. Compute PU = g™"mod p

3. Private key is PR ; Public key is PU 3. Private key is PR ; Public key is PU
Signing a message M Signing a message M

1. Pickrand k € {2, ..., q} with 1. Pickrand k € {2, ..., g-1}

ged(k,q)=1 2. Compute r = (g¥ mod p) mod g

2. Compute r= g mod p 3. Compute k' mod q

3. Compute k" mod g 4. Compute s = k' (H(M) + PR*r) mod g
4. Compute s = k' (H(M) - PR*r) mod q 5. Signature is the pair (r,s)

5. Signature is the pair (r,s)

Compute w=s"mod q

Verifying signature (r,s) on message M:
Check if r= (PU"™ * g"™™"mod p) mod ¢

Verifying signature (r,s) on message M:
1.
1. Check if g"M = pU"* rs(mod p) 2.

DSA - The Digital Signature Algorithm

History, Parameters, etc.

One component of NIST’s Digital Signature Standard (DSS)

e DSS was adopted in 1993
e DSA dates back to 1991

e One goal: Only support integrity - not confidentiality
o Why? Export restrictions!
o Alternative signature scheme: RSA - also an encryption algorithm

Key and Parameter Sizes:

e ElGamal is similar to Diffie-Hellman modulus size (N = number of bits)
o 1024-bit p was OK in 1990s - now suggest 2048-bit or 3072-bit
o Signature two N-bit values (e.g., two 1024-bit values)

e DSA uses a computationally-hard subgroup
o In 1990’s g was 160 bits (matching SHA1!)
o Signature was then two 160-bit values (more compact than ElGamal)
o Now suggest q being 256 bits

Reminder - RSA Algorithm

From Public Key Encryption chapter

Key Generation:
Pick two large primes p and q

Calculate n=p*q and ¢(n)=(p-1)*(q-1)

Pick a random e such that gcd(e, ¢(n))

Compute d = e (mod ¢(n)) [Use extended GCD algorithm!]
Public key is PU=(n,e) ; Private key is PR=(n,d)

Encryption of message M € {0,..,n-1}:
E(PU,M) = M° mod n

Decryption of ciphertext C € {0,..,n-1}:
D(PR,C) = C?mod n

Correctness - easy when gcd(M,n)=1:

D(PR,E(PU,M)) = (M®)? mod n
= M mod n
= M*M™M*! mod n
= (M*M)Y* M mod n
=M

Also works when gcd(M,n)#1, but
slightly harder to show...

RSA Algorithm for Signatures

“Textbook algorithm” - not how it’s really done

Key Generation:

Pick two large primes p and q

Calculate n=p*q and ¢(n)=(p-1)*(q-1)

Pick a random v such that gcd(v, ¢(n))

Compute s = v! (mod ¢(n)) [Use extended GCD algorithm!]
Public key is PU=(n,v) ; Private key is PR=(n,s)

Signing message M € {0,..,n-1}:
Sign(PR,M) = M®* mod n

Verification of signature o € {0,..,n-1}:
Verify(PU,M,c): Check if M = 6" mod n

RSA-PSS (Probabilistic Signature Scheme)

How it’s really done - with padding (similar to OAEP for encryption)

Invented (and proved secure)

by Bellare and Rogaway

e Also inventors of OAEP and
HMAC

Forging sigs w/ “textbook RSA”

e Pick random sig R
e Let message M=R"mod N
e (M,R)is valid sig pair!

Modifying sigs (“blinding”)

Given o = M*mod N
Compute X=R"mod N

M
E‘S_Lh]
¥
M' = | padding,; mHash salt
DB = padding, salt Hash
y
¢ MGF
¥ L 2
EM = maskedDB H bc

Let M = X*M mod N
Let 0’ = R*o mod N

Figure 13.6 RSA-PSS Encoding

Note (0')" = R0V =X"M=M
(mod N)

