
The University of North Carolina at Greensboro Handout 2
CSC 589: Trusted Computing and Security Models January 24, 2008
Prof. Stephen R. Tate

Assignment 1: Due Thursday, February 7

Objectives: There are two objectives with this assignment: To start you thinking about mod-
els of security and to give you some practice using LATEX in writing mathematical material.
Therefore, solutions should be prepared using LATEX!

1. Write up the coin-flipping protocol from Bellare/RogawaySection 1.2.3 in your own
words, using a step-by-step presentation (use anenumerate environment in LATEX).
Next, make a table of some values ofp, q, andN that could be used by Alice to commit
to a 0 and to a 1 (at least two examples for each value). Obviously, to be able to write this
out you’ll want to use values that are much smaller than the 500-bit primes mentioned in
the notes, but this is simply to illustrate the process, not to give values that would provide
any security. Your table should look something like this:

Bit Committed p q N

0 ... ... ...
0 ... ... ...
1 ... ... ...
1 ... ... ...

2. The most fundamental notion of computational complexityused in discussing the secu-
rity of cryptographic protocols is the notion of polynomial-time algorithms. Specifically,
we would like for our protocols to be such that no polynomial-time algorithm can break
them. A key assumption for many public-key algorithms is that there is no polynomial-
time algorithm for factoring — in other words, an algorithm that can take the product of
two large prime numbers (N = pq) as input and produce the factorsp andq.

Consider the basic algorithm of trying all integers from2, . . . , N −1 as possible divisors
and testing them all using a trial division. This obviously is a correct factoring algorithm,
but what is the complexity of the algorithm? Carefully justify your analysis, and clearly
justify your answer to the basic question: Is this a polynomial time algorithm?

3. (Graduate Students Only) Answer this question with as much detail and justification as
you can: a pseudorandom number generator (a “PRNG” — described in Section 1.2.1)
should be one-way in the sense that if you are givenb bits of output you cannot (in
polynomial time) compute the seed used by the PRNG. What doesthis mean as far the
size of the seed? Can it be a constant number of bits (unrelated tob)? Could it beΘ(log b)
bits? What is the right restriction on the size?


