The University of North Carolina at Greensboro Handout 3
CSC 589: Trusted Computing and Security Models February 21, 2008
Prof. Stephen R. Tate

Assignment 2: Due Thursday, March 6

1. For the first part of this assignment, you are to become familiar with the TPM/J software
and our use of Subversion within the lab to keep a repository of software.

Subversion is a popular “version control system” — a system that tracks changes to a set
of files. For our work on TPM/J, we’ll use Subversion to keep several main “branches”
of TPM/J code that we’re working on: A “distribution branch” which holds the code
exactly as distributed from the original authors, a “SPAN working version” that contains
changes that are made available to everyone in the lab, and your own personal working
version. You can run Subversion on any system you’d like to get and manage your code,
using either the text or a GUI interface, but unless you have a machine with a TPM it
would be best (by far) to do your work on the SPAN Lab machines.

Getting started: The first thing you need to do is “check out” a copy of the code reposi-
tory with this command:

svn co https://span.uncg.edu/svn/tpmjwork

The first time you run this it will complain about the Certificate from the SPAN server,
but if you tell it to accept this certificate permanently it will keep it as a “good certificate.”
You will need to enter your SPAN account login information next, and then it will create a
directory “tpmjwork” that contains the current code repository. Inside this you’ll find
subdirectories “dist” (for the distribution branch of TPM/J), “span” (for the SPAN
Lab version), and “users/youruserid” for your own copy.

Making your initial copy: Before you change any code, you will need to copy it into
your space. To do this, from inside the tpmjwork directory, issue the command:

svn copy dist/tpmj-alphal0.3.0 users/youruserid

Saving any changes you make: If you make changes to code and want to “check in” your
modified version, you can go into a directory that contains all changes (for example, in
tpmjwork/users/youruserid/tpmj—alpha0. 3.0), and issue the command

svn commit

This will bring up an editor for you to type some comments that describe the changes
you’ve made to this revision, and then the changes are copied up to the server. By default



Handout 3: Assignment 2: Due Thursday, March 6

this editor is “vim” on the SPAN Lab machines, but you can change the environment
variable “EDITOR” to make it use whatever editor you want.

Adding and removing files and directories: If you add new files that you want included
in the repository and tracked by subversion, you need to use the Subversion “add” com-
mand. For example, if you wanted to add the file newfile. java in the current direc-
tory, you’d use

svn add newfile. java

Similarly, to add a new directory, use the Subversion “mkdir” command, and to remove
files or directories, use “rm’”.

Finally, what to do for this homework problem: First, do the steps above to set up the
subversion repository for your work. Then create a new directory called “scripts”
under tpmj-alphal. 3.0 and create a file README . t xt in this directory where you
leave a brief message (anything for now). Make sure you set it up so Subversion tracks
this directory and file, and then commit your changes to the repository.

2. TPMs perform a variety of operations, and most of the time in these operations comes
from the time required for basic underlying cryptographic operations. We would like
to be able to have an accurate “timing model” of a TPM so that we can evaluate the
efficiency of algorithms without having to implement them, and so that we can estimate
the time a TPM would need in order to perform operations that we could proposing
adding to a TPM.

You should first write up a plan that includes how you will create your model (what are
you going to time and how are you going to time it) and, just as important, how you
will validate your model. For example, you could select certain TPM operations based
on the cryptographic operations they perform, and time them to deduce the times for the
basic cryptographic operations. Then you could use these results to estimate the time
for operations you have not timed, and see if this agrees. For possible operations to use,
you can use the information in our book, or in the TPM specifications (see the class web
site), or in the TPM/J code. For the planning part, you may discuss ideas with others in
the class, but the final design and plan should be yours.

Finally, following your plan, you should create and validate your model using the SPAN
Lab machines. If your plan requires creating any scripts or additional code, be sure to
check the code in to the code repository when you’re finished. Your assignment submis-
sion should include a final description of your timing model along with the values you
have measured.

3. Cryptography Notes: Problem 3.1.



Handout 3: Assignment 2: Due Thursday, March 6 3

4. Cryptography Notes: Problem 3.3 (the example we cover in class is close to a solution
for this, but it doesn’t satisfy the requirements perfectly; a small modification works, but
try to come up with a solution that is more significantly different). The most important
part of this problem is to provide a complete and rigorous proof regarding the security of
your construction — not a “sketch” of a proof, or an “outline”, but a full and complete
proof.

5. (Graduate students only) Cryptography Notes: Problem 3.9.



