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Practice Problems 3

These problems are “practice problems” to prepare for tladxam. There are more problems
here than will be on the exam, but they are approximately angesdifficulty and depth of the
problems that will be on the exam — as a result they are edsaer many of the homework
problems (where you have time to think about them), but threyadso not just “memorize
some facts to repeat” questions! Also note that these qumsstiover just the material since the
last exam, but the final will contain some questions oveleramaterial as well.

Students will work out and present solutions to as many «félgoblems as we can get to
in class on Thursday, December 4, and we will discuss theisoki Be prepared for that!

1. (Textbook Exercise 8.11) Show that, if every NP-hard leagg is also PSPACE-hard,
then PSPACE = NP.

2. (Textbook Exercise 8.22a) LetDD = {(x,y,z2)|z,y,z > 0 are binary integers and
x+y =z} ShowADD € L.

3. The simple algorithm for TQBF usé€¥(n?) space, meaning that TQBF SPACHn?).
Since TQBF is PSPACE-complete, does this mean that PSRAGPACEn?)? Explain
your answer.

4. State and prove Savitch’s Theorem.

5. (Textbook Exercise 10.5) Show that the majority functieth » inputs can be computed
by a branching program that hé$n?) nodes.

6. (Textbook Exercise 10.18) Prove thatAifis a regular language, a family of branching
programg By, B, . . .) exists wherein each,, accepts exactly the strings iof length
n and is bounded in size by a polynomiakin

7. The class PP is defined as the class of all langudgest have a corresponding proba-
bilistic Turing machine such that

1. w € Aimplies Pr[M acceptav] >

N[—= D=

2. w ¢ Aimplies Pr|[M acceptsv] <
Show thatVP C PP.

8. Define classes RP and BPP and prove itvatC NP andRP C BPP.



10.

11.

12.

13.

14.

15.
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Consider a class of languages defined as follows: langdaigein this class if there
exists a probabilistic Turing machiné such that

1. w € Aimplies Pr[M acceptsu] = 1

2. w ¢ Aimplies Pr[M acceptav] < 1
We haven't studied exactly this class, studied we have studirelated class. What can
you say about this new class in terms of languages that weesteidustify your answer.

Give the definition for an interactive proof system. Tldescribe an interactive proof
system for graph non-isomorphism and show that it meetseiipgined properties.

Consider an interactive proof system for a languagewhich the error probabilities are
as high as 0.35, exceeding the maximufi allowed in the definition of an interactive
proof system (Definition 10.28 on page 389). Show how to cudriies interactive proof
system into a new system in which thg3 error bound is achieved, showing théate
IP.

In homework you showed that randomization was impoff@amnthe verifier in an inter-

active proof. For this problem, prove that randomizatioasitt make any difference for
the prover — specifically, show that the class of languag#s wieractive proofs using
a probabilistic prover is the same as the class of languagksnteractive proofs using
a deterministic prover.

The following 4-by-4 matrix shows a potential operationa quantum gate — we’re
trying to make an “AND gate”, so have taken two inputs andaegtl the second input
by the AND of the two inputs, giving the following matrix:

00) [01) [10) |[11)
00) 1 1 0 0
o) o 0 0 0
10) 0 0 1 0
1) o o0 0 1

Unfortunately, this is not a valid transition matrix for aaqium gate. Why not? Give
both a mathematical reason (what mathematical propertyg tt@ematrix not satisfy?)
and a fundamental physical reason (what physical propergildjuantum gates have to
satisfy?).

Give a valid transition matrix for a quantum gate thaetaR inputs|z), |y), and|z),
and produces three outputs), |y), and|z @ (x ORy))

Describe Deutsch’s Algorithm for determining if a twgput function is constant or bal-
anced. What is the benefit of using quantum gates for thisgmob



