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Abstract. Oblivious transfer (OT) is a fundamental primitive used in
many cryptographic protocols, including general secure function evalua-
tion (SFE) protocols. However, interaction is a primary feature of any OT
protocol. In this paper, we show how to remove the interaction require-
ment in an OT protocol when parties participating in the protocol have
access to slightly modified Trusted Platform Modules, as defined by Sar-
menta et al. in proposing the notion of count-limited objects (clobs) [8].
Specifically, we construct a new cryptographic primitive called “gener-
alized non-interactive oblivious transfer” (GNIOT). While it is possible
to perform GNIOT using clobs in a straightforward manner, with mul-
tiple clobs, we show how to perform this efficiently, by using a single
clob regardless of the number of values that need to be exchanged in an
oblivious manner. Additionally, we provide clear definitions and a formal
proof of the security of our construction. We apply this primitive to mo-
bile agent applications and outline a new secure agent protocol called the
GTX protocol which provides the same security guarantees as existing
agent protocols while removing the need for interaction, thus improving
efficiency.

1 Introduction

Oblivious Transfer (OT) was introduced by Rabin [7] as a fundamental crypto-
graphic primitive, and subsequently many variants have been studied and used
in a variety of cryptographic protocols such as secure multi-party computation.
In a 1-out-of-2 OT protocol, Alice (the sender) has 2 values sy and s;, and Bob
(the receiver) has a selection bit ¢. At the end of the protocol, Bob learns the
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value s, while obtaining no information about s;_., and Alice cannot determine
which value Bob received. While in some OT variants the selection bit ¢ is ran-
dom, in this paper we only consider variants in which Bob selects the value c.
We call an OT protocol interactive if Bob must communicate with Alice or some
other party after selecting ¢, and non-interactive otherwise.

In the standard model of computation, non-interactive OT is clearly impossi-
ble: Bob can take a “snapshot” of his state immediately before picking a value of
¢, and then run his computation with ¢ = 0 to learn sg. Since this computation
was non-interactive, no state external to Bob is affected, so Bob can roll back
his state to the snapshot and re-run his computation with ¢ = 1, thus learning
s1 as well.

In this paper we consider a slightly augmented model of computation, reflect-
ing changes happening in real systems with “Trusted Computing” technologies,
and show that interactive OT is possible in such a model. We consider how to
efficiently accomplish an expanded and generalized form of non-interactive obliv-
ious transfer in such a model, define sensible security properties which we prove
hold in our protocols, and explore how this non-interactive oblivious transfer
can be used to improve the efficiency of secure function evaluation and secure
mobile agent protocols.

Trusted Computing is an initiative of the Trusted Computing Group [12], an
industry consortium of over 160 companies, to strengthen security in comput-
ing platforms through the use of trusted hardware. Key to Trusted Computing
are devices, called Trusted Platform Modules (TPMs) [13], which are already
appearing in many desktop PCs and laptops. Various researchers have begun
to explore the capabilities of systems that use these hardware modules, utiliz-
ing their unique functionality for various real-world applications. Recent work
at MIT by Sarmenta et al. [8] has introduced the idea of a wvirtual monotonic
counter which can be used as a building block for various applications like digital
cash, e-wallets, virtual trusted storage and digital rights management (DRM).
A virtual monotonic counter is a trusted counter that can be incremented but
not reset back to any previous value, thus removing the ability to roll the system
back to a previous state as described above. This security property is enforced
by the TPM alone and does not require a trusted OS for this purpose — in fact,
the required capabilities can be provided by other system augmentations, includ-
ing smartcards or other crypto processors that control key usage. In addition to
having interesting applications, virtual monotonic counters allow us to realize
count-limited objects or clobs which are tied to a particular virtual monotonic
counter. Examples of these include n-time use decryption or signature keys. The
use of each key is tied to a counter which enforces the condition that the key is
not used more than n times.

In this paper, we show how to use count-limited objects to implement a useful
generalized form of non-interactive oblivious transfer. This new primitive, which
we call “Generalized Non-interactive Oblivious Transfer” (GNIOT), is a way of
performing a collection of general (k-out-of-n) independent oblivious transfers
with a single request. In Section[Blwe present a formal definition with the desired
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security properties, along with our implementation and a security proof. GNIOT
can be accomplished in an obvious and inefficient way by using a distinct clob for
each value to be transferred, but this requires a significant number of expensive
key generation steps (one RSA key generation per clob). In this paper, we show
how to accomplish this in an efficient manner — by using a single clob, regardless
of the number of values to be transmitted. As an example application of GNIOT,
we show how this primitive can be directly applied to mobile agent computation,
where strong security is often enforced by interactive oblivious transfer in various
agent protocols. Removing the interaction from these agent protocols removes a
significant bottleneck to their efficiency and practicality.
In summary, our contributions include

— Definition of a new primitive called “Generalized Non-interactive Oblivi-
ous Transfer”, which is impossible to implement in standard computation
models, but is possible in a realistically augmented model based on Trusted
Computing technologies;

— An implementation of GNIOT which has significantly improved efficiency
over the straightforward implementation;

— Careful security analysis and rigorous proofs of our implementation; and

— Use of the GNIOT primitive to create a new non-interactive, secure agent

protocol called the GTX protocol.

2 Definitions and Preliminaries

In this section, we briefly present background information on the building blocks
of GNIOT, namely, oblivious transfer and count-limited objects.

2.1 Virtual Monotonic Counters and Count-Limited Objects

Sarmenta et al. [§] outline how to create a potentially unlimited number of
virtual monotonic counters from a physical monotonic counter or from other
potential capabilities of TPMs. While this requires some changes in TPMs, the
additional requirements are quite modest, as outlined in this section. They model
a virtual monotonic counter as a mechanism that stores a value and provides
2 commands to access this value: a Read command that returns the current
value of the counter, and an Increment command that increments the value of
the counter and returns the updated value of the counter. A virtual monotonic
counter must be non-volatile, i.e., the value of the counter must not change un-
less incremented in response to a command. It must also be irreversible, namely,
it must be infeasible for any adversary (including the owner) to reset the counter
to any previous value. Finally, the virtual counter must produce verifiable out-
put. This is accomplished by using unforgeable execution certificates. First, the
counter produces a verifiable output message in response to the Read or In-
crement commands. This output is then typically signed using an Attestation
Identity Key (AIK and random nonces are used to prevent replay attacks.

1 An AIK is a special type of signature key created on a TPM. The private portion of
this key is non-migratable.
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Building from these virtual counters, Sarmenta et al. have proposed count-
limited objects, or clobs, as an interesting and important primitive. These are
proposed objects that utilize the ability of a TPM to encrypt data or keys into
“blobs” such that they can only be decrypted when the TPM is in a speci-
fied state, which in current TPMs is limited to conditions based on the PCRs.
In Sarmenta’s construction, these encrypted blobs are then linked to a virtual
monotonic counter which is used to track/limit the usage of the blob. They
also proposed an efficient hash-tree based scheme that allows the TPM to keep
track of a large number of virtual monotonic counters, thereby enabling various
count-limited objects, each having its own dedicated virtual monotonic counter.
While this scheme requires a new command to be added to the TPM, the com-
putations required are relatively simple and could easily be implemented on the
microcontrollers that current TPMs are being built from.

2.2 Non-Interactive Oblivious Transfer

In this section we outline new ideas on how count-limited objects can be used to
implement a non-interactive version of standard oblivious transfer. In an obliv-
ious transfer protocol, two parties can exchange information without learning
anything about each other’s inputs.

1-out-of-2 Oblivious Transfer (OT): In the standard 1-out-of-2 OT, when
Alice transmits one of sg or s; to Bob in an oblivious manner, interaction
between Alice and Bob is typically required. In a common solution, Bob
needs to supply Alice with keys to encrypt her strings and this is done only
after he decides which value he requires. Therefore, Alice cannot encrypt the
strings unless Bob sends her the keys, which he cannot do until he decides
which string he wants. Using count-limited objects, Bob can compute keys
before making a decision of which s. he wants, and his later use of that key
is restricted by the count-limited property.

We point out that Bellare and Micali [3] have previously introduced a
related but different notion of non-interactive oblivious transfer, but in their
case Bob receives a randomly selected s. (he doesn’t get to choose which
one). This is useful in some applications, but not in the Secure Function
Evaluation problems that we are interested in, such as secure mobile agents.

Non-interactive OT using a count-limited decryption key: Alice has 2
values sg and s;. Bob has a TPM and generates a one-time use non-migratable
key pair, K, K5 and publishes the public key K, which is certified using an
AIK Iy, which in turn is certified by a Privacy CA. This one-time use key pair
is tied to a virtual monotonic counter which limits the private key K, to being
used no more than once. Alice encrypts both values sg and s; using K, hav-
ing verified that the key is indeed Bob’s via the accompanying certificate. At
some later time, after receiving the ciphertexts, Bob can decide which value
he wants. Then Bob decrypts only that value using K, being restricted to do
so by the virtual monotonic counter, which is incremented as soon as one of
the values is decrypted.
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This clearly solves the non-interactive OT problem, but in applications
which use multiple oblivious transfers, a separate key must be generated for
each OT, which is very inefficient. In the following section, we will show how
a single clob can control multiple oblivious transfers.

3 Generalized Non-Interactive Oblivious Transfer

We generalize the 1-out-of-2 OT concept to a form where multiple indepen-
dent oblivious transfers (of the general k-out-of-n type) are defined as part of a
single operation. In many applications (such as secure function evaluation) mul-
tiple instances of OT must be run, so by defining this as a single operation we
have the flexibility of creating solutions which can exploit improvements possible
by aggregating multiple requests. We call this combined operation “generalized
non-interactive oblivious transfer (GNIOT),” which we formally define in the
following section.

3.1 Problem Definition

We first define Generalized Oblivious Transfer (GOT), and we will subsequently
define phases which will force this to be non-interactive, producing GNIOT.

Definition 1 (GOT). Define A as the security parameter and lg as the length
of the data items being sent by Alice to Bob. Assume that Alice has n data
sets Si,S2,++,Sn, with values x;; € {0,1} for i € {1,2,---,n} and j €
{1,2,---,m;}, and parameters ki, ka, ..., k,, where 1 < k; < m;. At the end of
the GOT execution, Bob will have either no result (represented by L) or a set of
exactly k; values of his choice from each set S;, fori € {1,2,---,n}.

We will need to refer to sets of indices into the data set, so define index set
7 to be a set of indices (4,75), and define Z(i) = {j|(4,4) € Z}. With respect
to the parameters provided in an instance of GOT, we say that index set 7 is
well-formed if |Z(i)| = k; for all i € {1,...,n}.

We define GNIOT as a set of operations which perform GOT, but accomplish
this task without requiring any interaction between the receiver and another
party after the receiver decides which values he wants. For maximum flexibility,
allowing either batched or individual decryptions, we define the decryption op-
eration as a stateful process which is called repeatedly — only at the very end
are we required to have the actual plaintext values.

Definition 2 (GNIOT). Generalized Non-Interactive Oblivious Transfer con-
sists of the following phases, which provide a solution to the GOT problem.

Setup Phase. This phase involves key generation. Given security parameter X,
the key generation algorithm returns

(Kp, Ks) — Setup(1?)

where KCp, is the public key information, and KCs is the secret key information.
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Transmit Phase. This phase transforms the set of values z; ; € {0, 1} fori €
{1,2,---,n} and j € {1,2,---,m;} into a data blob which can be transmitted
to the receiver. Specifically,

(F1,211,%1,2, * T1lm,)
, (K2, 22,1, 2,2, s T2,ms,)

C « Transmitg,
<kna Tn,d,Tn,2," " 7$n,mn>

Decrypt Phase. In this phase, the receiver gives the indices (i,7) of the x; ;
values that he wishes to receive. The state-based process begins by calculat-
ing the initial state Sy — InitialState(C), and then evolving the state and
providing answers to queries as

(t, Sk) « Decryptc (Sk—1,C, ik, ji),

for k=1,2,... q for some number of queries q. We require that indez in-
formation be embedded in ty such that there is a function “ind” that extracts
this information as

(ik, Ji) < ind(ty).

PostProcess Phase. This phase takes the results of the Decrypt calls and ei-
ther fails (giving L as the result) or produces q plaintext values as

(v1, V2, ...,vq) < PostProcess(ti, ta,- -, tq)

3.2 Desired Security Properties
A secure GNIOT scheme must satisfy the following properties:

Correctness. If the Alice and Bob follow the above steps in the prescribed
way, and the index set defined by Z = {(4, j) | ind(tx) for 1 < k < ¢} is well-
formed, then the values produced by PostProcess are exactly the requested
plaintext values such that vy = Zjnq(,) for k=1,...,q.

Sender’s Privacy. Bob should not be able to obtain any information about
the remaining m; — k; elements in each set .5;.

Receiver’s Privacy. Alice should not be able to determine which k; values
Bob received from each set.

In a non-interactive process, where there is no communication with the sender in
the Decrypt or PostProcess phases, the Receiver’s Privacy property is trivially
met. For the Sender’s privacy, we define a game played between a probabilistic,
polynomial time (PPT) adversary A and an oracle, where the oracle runs the
parts of the parts of the protocol associated with the Sender.
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1. The adversary supplies a plaintext input to the GNIOT scheme where each
input has two different possibilities:

<($E1))71, Ii,l)? (Ig,% x%ﬂ) ) (xg,ml ) x%,m1)>
<(952,1» 552,1)» (552,2’ 552,2) ) ($2,m2a$2,m2)>
<(x91,17 I}z,l)v (I%,% x'}z,2) Tty (I%,mnvx;,,mn)>

2. The oracle generates an independent random bit r; ; €r {0,1} for each
pair. The oracle then creates a single GNIOT input by using inputs "’

i,
fori=1,2,---,nand j =1,2,---,m; and calls the Transmit function. The
resulting C is sent back to the adversary.

3. (a) A makes a series of calls to Decrypt, receiving values t1,%a,. .., t,.

(b) The adversary is free to perform any computation using the information
it obtained, possibly calling the PostProcess function of the GNIOT
scheme.

(¢) The adversary finally outputs a guess g and an index (a, b).

The adversary wins this game if g = r, 5, but we are only interested in when the
adversary wins to learn a value that it shouldn’t. Therefore, if 7 is the index set
for the queries made in Step 3a, we define the “advantage” for adversary A as

1
Advenror,.a = |Prlg = rep|(a,b) € T or T not well-formed] — 3|

The security of a GNIOT scheme is defined as the advantage of the best adver-
sary,
Advgnror = mﬁX(AdUGNIOT,A)a

and the scheme satisfies the Sender Privacy property if Advgnror is negligible.

3.3 TPM-Based Solution

Our TPM-based solution makes use of both a standard symmetric cipher and
a public key cryptosystem in which use of the private key is count-limited by
the TPM. Based on previously defined parameters A and l; we define several
additional parameters for our solution, as given below.

— Iy (Encrypted Data Length): Length of the data after encryption with the
symmetric cipher.

— ls (Symmetric Key Length): Length of the key for the symmetric cipher.
Must be polynomial in .

— I, (Public Key Payload Size): Length of data that can be encrypted with the
public key scheme. Must be polynomial in A, and must satisfy I, > I + [,.

The basic idea behind our GNIOT scheme is to doubly encrypt the values z; ;
with the symmetric scheme and the public key scheme so that the count-limit
restriction ensures that not too many values are decrypted, and a secret sharing
scheme is used to make sure that at least k; are decrypted from each set to allow
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recovery of the symmetric key for the final plaintext decryption. As a result,
exactly k; values from each set must be decrypted. Our formal definition follows
the phases defined in Section [3.11

Setup Phase. Bob creates an N-time use count limited key pair [§] (K, K),
where N = (k1 + ko + -+ + k,,). For further assurance in subsequent key
transfer, Bob can certify K, using an Attestation Identity Key (AIK).

Transmit Phase. The plaintext values x; ; provided to the Transmit function
will be first protected using a symmetric cipher (such as AES), using a session
key R that is generated by selecting n partial keys R; €r {0, 1}'s and letting
R = Ri®R2®- - -®R,. Next, for each i we compute m; shares of each R; using
a threshold-k; secret sharing scheme, such as the polynomial interpolation
based scheme due to Shamir [9], and we denote the shares of R; by fi(j),
for j = 1,...,m;. By using threshold k; in the secret sharing scheme, we
will be able to compute R; given any k; of the f;(j) values. Using PKEk,
and SKE R to denote the public key and symmetric encryption schemes with
keys K, and R, respectively, we doubly encrypt each z; ; along with a share
of R; to give

Cij = PKEK,((SKE r(wi;), fi(4)))- (1)

The collection of ciphertexts C; ;, for i € {1,2,---,n} and j € {1,2,---,m;},
is then the output of the Transmit function.

Decrypt Phase. The only state used in our implementation is in the virtual
monotonic counter maintained by the TPM, so all state operations are im-
plicit in the use of count-limited keys. Decrypti (Sk—1,C, ik, jr) then just
uses s to decrypt C; and bundles the resulting values with the index
(ik, jr) to give

ksJk

tr = (ik, Jk. SKER(4y, 51, ), fir, (Gk)) -

PostProcess Phase. For the final PostProcess stage, let T = {(ig,jx)]1 <
k < g} be the index set of requests made in the Decrypt phase. Then Bob
extracts the shares f;, (ji) from each t;, and for each i € {1,...,n} combines
the shares corresponding to Z (i) to recover each R;. These values are then
exclusive-ORed together to recover the symmetric key R, which is used to
decrypt the plaintexts x;, j, -

3.4 Security Analysis

In this section, we formally prove that our scheme has the required security
properties. We use standard security definitions of public key encryption and
symmetric key encryption schemes (for example, see [1]).

Theorem 1. If PKFE is an IND-CCA2 secure public key scheme and SKE is
a IND-CCA2 secure symmetric cipher, then a probabilistic, polynomial time ad-
versary A can win the GNIOT game with non-negligible probability if and only
if T is a well-formed index set and (a,b) € T.
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Proof

Case 0. (a,b) € Z, and T is a well-formed index set.
It is easy to see that the PPT adversary A wins in this case: If 7 is a
well-formed index set, A can obtain exactly k; values from set S;, by calling
the decrypt function, which returns ¢; ; values as the decryption of the corre-
sponding C; ; values in each set. If (a,b) € Z, then A can call the PostProcess
function to correctly obtain corresponding value xg p.

Case 1. (a,b) ¢ Z, where 7 is a well-formed index set.

Let A be a PPT adversary that wins the GNIOT game with non-
negligible probability, i.e. A distinguishes between the encryptions of x?)j
and xll ; with non-negligible probability. We can use A to construct a PPT
adversary A’ that attacks the CCA security of the PKE as follows: A’ obtains
pk from the PKE oracle which it passes along to 4, and then receives the
values z ; from A, where i € {1,...,n},j € {1,...,m;}, and b € {0,1}. A’
picks values Ry, ..., R, and computes R and the shares f;(j) of each R; as in
the GNIOT.Transmit phase, and selects an index (a,b) at random. For each
(i,7) # (a,b), A" picks r; ; at random and computes C; ; according to ().
For index (a,b), A" submits (SKER(2Y ), fi(4)) and (SKER(x! ), fi(§)) to
the PKE oracle, which returns the encfyption of one of these v&,mlues7 which
A’ uses for Cyp. A’ the sends all of the C; ; values to A as the output of
GNIOT.Transmit.

In the next stage of the GNIOT game, A requests the decryption of
values C; ;, and as long as (i,7) # (a,b), A’ can answer these directly by
providing x?]] . If A requests the decryption of Cy p, then A’ outputs L, and
quits the game. After ¢ queries A outputs an index (a’,b’) and a guess g. If
(a',b') = (a,b) then A’ outputs g as its own guess in the PKE game, and if
(a',b") # (a,b), A" outputs L and quits the game.

For A’ to win this game, A”’s randomly chosen index (a, b) must be the
same as A’s selected index (a’,b") (which occurs with probability 1/N) and
A must win the GNIOT game. Therefore

Pr[A wins] = %P?‘[.AI wins],

and so Pr[A’ wins] = N - Pr[A wins] < N - Advpgg. Since PKE is an
IND-CCA2 secure public key scheme, Advpk g is negligible, and therefore
the probability that .4 wins the GNIOT game is also negligible (as required
for this case).

Case 2. (a,b) € T but 7 is not a well-formed index set.

Let A be a probabilistic, polynomial time (PPT) adversary that plays
the GNIOT game and attacks the TPM-based scheme. The intuition behind
this case is that in order for A to win the GNIOT game in this case, it must
either break the SKE scheme to decrypt SKEr(z,4,5) without knowing R, or
must break the PKE scheme to gain additional information about R.

Define game G as the GNIOT game as defined in definition[3] i.e., A tries

to distinguish between the encryptions of xgj and xllj for some (i,7). Now
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let us define a modified game G-, where instead of using the real symmetric
key R, the transmit oracle (in part 3 of the GNIOT game) uses a different,
independent, random key, R, to encrypt the values in each set. Let T; be the
event that A wins in game G; and T5 be the event that A wins in game Gs.

We can use A to construct a PPT adversary A’ that attacks the CCA
security of the PKE scheme. In particular, since Z is not well-formed, there
must be some set ¢ such that |Z(7)| < k;, so R; and hence R is independent
of the decrypted shares of R;. Therefore, unless A can get some information
from the non-decrypted C; ; values it gets no information about R and so
must break the SKE scheme.

A’ gets public key K, from the PKE game. A’ picks random key R and
computes all R; values and shares f;(j). Next, A’ picks a random index
(a/,'), and for all (4,5) # (a,b) computes C;; for random selection 7; ;
exactly as our GNIOT algorithm. For index (a’, '), A’ substitutes a random

share fo (V') in place of the real fo/(b') for one alternative:
Py = (SKER(xg ) fw V) Pary = (SKER(wip), fur () -

These two plaintexts are then passed along to the PKE game as the challenge
plaintexts, and we receive a ciphertext Cy  back, which is the encryption
of one of these. Note that if PY ,, is chosen, the key used is the correct key
constructed from the share f, (b’ ), so we're perfectly simulating the GNIOT
game (game G1). On the other hand, if P}, ;, is chosen then the fake share
f~ar(b' ) makes the symmetric key R independent of the key reconstructed
from the shares, and so we're perfectly simulating game Gs. Let 6§ € {0, 1}
represent the choice made by the PKE game.

When A produces an index (a, b) and guess g, if (a, b) = (a’, V) we output
“fail” and quit. When (a,b) # (a/,), if g = 74 (i-e., the guess is correct),
we output 5 =0 as our guess in the PKE game; otherwise we output 5=1.
Analyzing the probability that output 6 is correct,

Pr[6 = 6] = Prlg = r4,|6 = 0]Pr[6 = 0] +
(1= Prlg=rep|d =1]) Pr[d = 1]

1 1
3 Pr(Ty] + 3 (1 — Pr[T»))

1 1
5 (P’I‘[Tl] — P’I‘[TQ]) + 5 .

Since & = 6 means A’ wins the PKE game,
~ 1
PT[Tl]—PT‘[TQ]:2<P7“[(5:6]—§) §2AdUpKE . (2)

Next we use A to construct an adversary A’ playing the standard SKE
game. A selects R; values and computes R and the shares f;(j) as in the
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algorithm, and also generates a public keypair (K, Ks). A" initiates the SKE
game, which causes the SKE oracle to select a symmetric key that is random
and independent of R, and which will be used for all symmetric encryptions
that are provided to A — this means that A is actually playing game Go.
Next, A" selects a random index (a/,b"), picks a random bit r; ; for each
(1,7) # (a’,b’), and uses the SKE encryption oracle to compute plaintexts
P, j = (SKE.Encrypt(x;'), fi(j))- A" then passes both 9, and ), as
the challenge plaintexts to the SKE game, and receives a ciphertext ¢ back,
which it uses to compute P,/ = {(c, for(b')). Now A" uses it’s public key
K, to compute C; j = PKEk, (P; ;) for all (i,7).

Finally, A will produce index (a,b) and a guess bit g. If (a,b) # (a’, V)
we output “fail” and quit; otherwise, we pass along the guess g as As guess
in the SKE game. A" wins exactly when it’s index (a, ) is correct and when

A wins (in game G3), so
1
Advgp 47 = NPT[TQ].

This means that Pr[Ty] < N - Advsk . Combining with equation (2]), we get

P’I”[Tl] — N - Ad’USKE S 2 Ad’UpKE
PT[Tl] <2 Advpggr + N - Advsk g

Therefore, Advanror <2 Advpkg + N - Advsk g, and since PKE and SKE
allow only negligible advantage, Advgnror is also negligible. |

4 Non-interactive Secure Mobile Agents

In this section we give an example application of the GNIOT primitive, in which
we significantly improve the efficiency of secure mobile agent protocols. In the
mobile agent paradigm, an agent owner, also called the originator, creates soft-
ware agents that can perform tasks on her behalf. After creating the agents
for some specific purpose, the originator sends them out to visit various remote
hosts, where the agents perform computations on behalf of the originator. When
the agents return home, the originator retrieves the results of these computa-
tions from the agents. The utility of this paradigm is based on the ability of
the originator to go offfine after sending the agents out, and, ideally, no further
interaction between the agent and the originator or the host should be required.

The agent and its state travel to potentially untrusted hosts, where it is at the
mercy of the execution environment provided by that host, so the problem of pro-
tecting the agent’s computation and state from malicious hosts is quite challeng-
ing. Secure Function Evaluation (SFE) provides a means to protect these compu-
tations, as described more carefully below, but requires interaction between the
remote hosts and either the originator or proxies for the originator. Examining
this interaction more closely, we will see that the only interaction required is for
a set of oblivious transfers, and so by applying our GNIOT implementation we
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remove the interaction requirement for secure mobile agent computation. Since
the oblivious transfer and the corresponding interaction is a major bottleneck in
implementations of these protocols [6], the resulting non-interactive secure agent
computations improve the practicality of these techniques significantly.

In the following sections, we review SFE concepts and techniques, explore
the relation between SFE and secure mobile agent computation, and outline an
improved agent protocol using the GNIOT primitive from the previous section.

4.1 Secure Function Evaluation

Two-party Secure Function Evaluation (SFE) is a cryptographic primitive that
allows two parties, Alice and Bob (with inputs a and b respectively) to compute
a function (A4, B) « f(a,b) such that Alice learns output value A and Bob learns
output B, and neither party learns anything more than what follows from its own
values. Yao showed that for any polynomial-time computable function f, there
exists a polynomial time SFE protocol [I5]. The function is represented as an
encrypted circuit where the values on the input wires are random strings (called
signals) instead of the actual boolean values, and the mapping of the random
signals to the real inputs is kept secret. Through carefully-specified truth tables
that allow evaluation of gates without needing to know the semantics of the
random signals, the encrypted circuit can be evaluated without any information
being revealed to the evaluator. The result of the evaluation is in encoded form
as well, and to decode the output, knowledge of the mapping of the random
signals to the real outputs is required.

In this two-party protocol, Alice creates an encrypted circuit to evaluate the
desired function. Then Alice sends the encrypted circuit (along with a proof that
the circuit was constructed properly if Alice isn’t trusted) along with the random
signals corresponding to her input to Bob. She also sends a mapping which will
allow Bob to decode his output (B) at the end of the computation. Bob must
somehow learn the random signals for his input b, but he cannot be given the full
input-to-signal mapping. To accomplish this, he engages in a 1-out-of-2 oblivious
transfer protocol with Alice for each bit of his input, after which Bob knows the
signals for his input bits while Alice learns nothing about which signals Bob
received (i.e., Bob’s input b). Bob now evaluates the encrypted circuit, having
obtained random signals corresponding to both inputs a and b, and returns
the resulting encrypted form of Alice’s output A to her, which she can decode.
Bob uses the previously-supplied mapping for his output signals to decrypt his
output. Note that the only interaction required between Bob receiving the circuit
and evaluating the circuit is the set of 1-out-of-2 OTs that he uses to receive
the random signals for his input, and the form of this operation is exactly an
instance of our GNIOT primitive.

4.2 Application of SFE to Mobile Agents

When an agent visits a host, it carries with it some state from previous compu-
tations, and performs a computation using this state and some input from the
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host being visited. Output of this computation consists of a new agent state, and
possibly some output provided to the host. The agent state (both old and new)
are “owned” by the agent, and should be protected from potentially malicious
hosts, whereas the host input and output are “owned” by the host and should
likewise be protected from potentially malicious agents. For the sake of efficiency,
we also allow a host or the agent to provide some non-sensitive, unprotected data
to the computation. We refer to this as the “Agent Data”, and as a result we
formalize an agent computation as the 3-input, 2-output computation illustrated
in Figure [l

Agent State Agent State
(from >
previous host) _I
Agent Data
(from non-secret —» encodeAgentinput —3»| Evsaelﬁggieon
agent computation)
_|—> |3 decodeHostOutput —p HOSt OUtpﬁ_t N
Host Data (used by this host)
— encodeHostInput

(supplied by host)

Fig. 1. Agent Computation at a Remote Host

In order to secure this computation we can use two-party Secure Function
Evaluation, where one party (the originator) controls the top input and output
in the figure, and the other party (the host) controls the bottom two inputs and
the bottom output in the figure. Unfortunately, the standard SFE technique de-
scribed in the previous section requires interaction between the parties, meaning
the originator could not be offline, violating a basic property of mobile agent
computation. Two existing solutions to the secure agent problem get around
this in different ways: a protocol due to Algesheimer et al. [2] uses a trusted
third party as a proxy for the originator in the oblivious transfer, and a protocol
due to Tate and Xu [11IT4] (the “TX protocol”) uses threshold cryptography
and collections of other agents to stand in for the originator. As noted in the
previous section, the required oblivious transfer (a l-out-of-2 transfer for each
bit of the host’s input) is exactly an instance of GNIOT, and by using our TPM-
based implementation we can completely remove any need for interaction in the
agent computation. Due to the similarity with the TX protocol, we call this new
protocol the “GTX protocol.”

4.3 The GTX Protocol

In this section we describe all of the steps required by our non-interactive se-
cure agent protocol. We break down the required operations into three phases,
initialization, evaluation, and finalization, corresponding to the three phases of
the SAgent software framework for secure mobile agents [5]. While all steps are
described here, space limits preclude a detailed descriptions and readers unfa-
miliar with previous work in secure agents may want to refer to earlier papers
in this area [2[TTIT4].
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1. Initialization: The originator creates an encrypted circuit for each sensitive
computation to be carried out at a host — the square box in Figure[Il As
outlined in section ]l encrypted circuits are special boolean circuits where
the signals on the wires are random strings instead of 0 or 1. Since the
encrypted circuit can be evaluated with encoded signals, the agent state and
inputs must be encoded and incorporated into the agent.

For the GTX protocol, the participating hosts are assumed to have TPMs,
with unambiguous identities which can be verified by an agent originator.
Each host willing to accept agents and supply n-bit inputs executes the Setup
phase of GNIOT to generate n-time use keys that are made available to users
wishing to send agents. When an originator wants to send out agents, the
originator executes the Transmit phase of the TPM-based GNIOT scheme,
where m; =2and k; = 1foralli € {1,...,n}, and we let z; 1 and x; 2 be the
two signals corresponding to boolean values 0 and 1 for host input bit 4. Note
that the output of the Transmit phase of GNIOT is exactly what the hosts
will need to decrypt exactly one random signal for each of its n input bits. In
creating the agent, the originator bundles together the encrypted circuit, the
output C of the GNIOT Transmit phase, and the host’s output-to-boolean
mapping and includes all of this information in the agent. The originator
keeps the final state signal-to-boolean mapping for use in decrypting the
final agent state when it returns after having visited the hosts.

2. Evaluation: In the evaluation phase, the host has received an agent, which
carries with it the values described above. If the host’s input is made up of
bits (b1, ba, . .., by, ), the host calls the GNIOT. Decrypt with indices (i, b; + 1)
for i = 1,...,n. Running PostProcess on the results of these Decrypt calls
will provide (@1 by +1, T2,b5+15 - - - » Tn b, +1), Which are exactly the random sig-
nals needed to evaluate the encrypted circuit. Note that if the host tries to
cheat either by requesting both signals corresponding to a single input bit
or by requesting more than the allowed number of decryptions, the GNIOT
protocol guarantees that the host learns nothing at all about the random
signals used by this encrypted circuit. After evaluation of the encrypted cir-
cuit, the host uses the output signal-to-boolean mapping supplied by the
originator (and carried by the agent) in order to decrypt its input.

3. Finalization: When the agent returns to the originator, its final state will be
decrypted by the originator.

5 Conclusion

In this paper, we have shown how to remove interaction requirements in the
fundamental cryptographic primitive of oblivious transfer to create an expanded
cryptographic primitive called “generalized non-interactive oblivious transfer”
(GNIOT). Based on recent research which shows how to instantiate count-limited
objects using the monotonic counter in trusted platform modules, we outline how
to use count-limited objects to efficiently instantiate an oblivious transfer prim-
itive while removing the interaction requirements necessary in such a protocol.
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We provide rigorous proofs that under an assumption of secure TPMs (and
standard complexity assumptions), our construction provides the same security
properties as those of standard oblivious transfer. In addition, we show how to
apply the GNIOT primitive to develop a secure mobile agent protocol (called
the GTX protocol) where strong security guarantees can be achieved without
the interaction requirements necessary in previous secure agent protocols.
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