
Random Oracle Instantiation in Distributed Protocols
Using Trusted Platform Modules

Vandana Gunupudi
vgunupudi@gmail.com

Stephen R. Tate
srt@cs.unt.edu

Dept. of Computer Science and Engineering
University of North Texas

Denton, TX 76203

Appeared in the3rd IEEE Symposium on Security in Networks and Distributed Systems, 2007, pp. 463–469.

Abstract

The random oracle model is an idealized theoretical
model that has been successfully used for designing many
cryptographic algorithms and protocols. Unfortunately, a
series of results has shown that proofs of security in the
idealized random oracle model do not translate into secu-
rity in the standard model (basically synonymous with “real
systems”), so the reasoning that protocols designed using
random oracles are secure on real systems is heuristic at
best, and fundamentally flawed at worst. In this paper, we
consider how architectural changes taking place in real sys-
tems today, specifically the introduction of the trusted plat-
form module, affect the realizability of random oracles. In
particular, we show how a TPM that is only trivially en-
hanced from real, standard TPMs can leverage one of its
most powerful capabilities — the capability of keeping se-
crets from the host in which it resides — in order to provide
functionality that is indistinguishable from a true random
oracle to any polynomial time adversary. In addition to a
careful description of how this works, we provide security
proofs based on assumptions of TPM security, and provide
concrete performance estimates through benchmarks using
a current TPM. To prove the security of our TPM-based
scheme, we formally define and prove properties about a
cryptographic primitive which we call a “hybrid pseudo-
random function” that may be of independent interest.

1 Introduction

Arguably the most successful theoretical model used to
design practical cryptographic algorithms and protocols is
the random oracle model [6]. This model has been suc-
cessfully used to design such cryptographic techniques as
the Probabilistic Signature Scheme (PSS) [7] and Optimal
Asymmetric Encryption Padding (OAEP) [16], which are

widely used in practice. The idea with this model is to prove
a cryptographic scheme secure in the random oracle model,
where all parties including the adversary have access to a
random function, called arandom oracle, and then replace
the random oracle with a “good” cryptographic hash func-
tion in the standard model. A proof of security in the ran-
dom oracle model is then taken as evidence that a scheme
is secure in the standard model if the instantiation of the or-
acle by the hash function is secure, although this reasoning
has some weaknesses as we describe below.

One of the proposed instantiations of a random oracle in
the real world is a pseudorandom function (PRF). A PRF
produces output that is computationally indistinguishable
from random to a polynomial-time attacker. PRFs are nat-
ural candidates for instantiating random oracles; however,
this approach does not give the strong guarantees that one
would like, and problems with this were noted even in the
original and influential random oracle paper by Bellare and
Rogaway [6]:

The cryptographic primitive suggested and con-
structed for this purpose [replacing a random ora-
cle] is the pseudorandom function (PRF). For a
PRF to retain its properties, however, the seed
via which it is specified (and which enables its
computation) must remain unknown to the adver-
sary. Thus the applicability of the paradigm is
restricted to protocols in which the adversary is
denied access to the random oracle.

In protocols in which a party participating in the protocol
can be corrupt, and yet must have access to the random ora-
cle, it is impossible in a traditional model of computation to
keep the seed from the adversary. This was explored rigor-
ously by various authors [3, 9] who showed that there exist
schemes that are secure in the random oracle model but are
uninstantiable in the standard model. Bellareet al. [3] de-
fine a scheme asuninstantiablewith respect to some goal
if there is a secure implementation of the scheme in the

random oracle model that meets this goal but no instanti-
ation of the scheme meets the goal in question in the stan-
dard model. When instantiating the scheme in the standard
model, the random oracle is replaced by some family of
functions. Canetti, Goldreich and Haveli [9, 15] showed
that there exist uninstantiable schemes for the cryptographic
goals of IND-CPA secure encryption and digital signatures
secure against chosen message attacks. Bellareet al. [3]
showed that the Hash ElGamal scheme, a hybrid encryption
scheme, is uninstantiable for the goal of IND-CCA secure
asymmetric encryption. While these negative results don’t
imply that all schemes designed using random oracles are
insecure, they do show using security proofs that rely on
the full power of random oracles to imply security in the
standard model are inherently flawed, and security guaran-
tees in such a situation are at best heuristic. However, this
does not mean that all is lost for schemes designed using
the random oracle model — it is still quite possible that an
algorithm designed using random oracles could require less
strict requirements than complete randomness, and hence
instantiations that preserve security under weaker require-
ments could work.

Motivated by the importance of the random oracle model
and these impossibility results, in this paper we explore the
possibility of utilizing the unique functionality of the trusted
platform modules (TPMs) proposed by the Trusted Com-
puting Group [17] to instantiate a random oracle, when all
parties have access to a TPM. A TPM has precisely the ca-
pability that is missing in the preceding discussion regard-
ing the use of a PRF: the ability to keep secrets from the
platform owner while allowing the use of those secrets in
carefully controlled ways. Even more importantly, a type
of key introduced in the latest version of the TPM specifi-
cation (version 1.2), called a “Certifiable Migratable Key”
(CMK)1, allows a set of TPMs to establish a shared secret
in such a way that all parties have assurance that these se-
crets have never been available outside of a protected TPM
environment. Using such a shared secret as a seed to a PRF
would then allow a platform to utilize this PRF with an un-
known seed in place of a random oracle. What this does is
allows us to move from heuristic arguments based on ran-
dom oracles to rigorous proofs based on an assumption that
TPMs securely implement their specified functionality (in
addition to some standard complexity assumptions). While
this means we rely on an additional assumption, we feel this
is in many instances a better foundation than the demon-
strably flawed reasoning regarding random oracles being in-
stantiated in the standard model.

Ourmain contributions include

• a secure instantiation of random oracles in multi-party

1Note that in various parts of the TCG specifications, this keytype is
referred to as “certified migration key” and “certifiable migration key” in
addition to “certifiable migratable key.”

protocols using a combination of existing and easily
provided TPM functionalities;

• careful analysis and rigorous security proofs of our
construction;

• a formal definition and a security proof of a new cryp-
tographic primitive called a “hybrid pseudorandom
function”;

• benchmarks taken using an actual TPM that allows us
to analyze the practical efficiency of our technique;
and

• the solution of an interesting subproblem, that of us-
ing CMKs to establish a shared secret without needing
the participation of a migration authority as an active
trusted third party.

The rest of this paper is organized as follows: In Section 2
we discuss relevant TPM functionality and proposed exten-
sions to the functionality. For background on trusted plat-
forms, refer to [1]. Section 3 is our main result section,
where we describe the random oracle model, present our
techniques and prove security properties. In Section 4 we
report some benchmarks of TPM operations that we per-
formed, and use those timings in an efficiency analysis of
our technique. Finally, Section 5 wraps up the paper with a
discussion of remaining problems and summarizes our re-
sults.

2 Our Use of TPM Functions and Extensions

In this section, we present an overview of the TPM func-
tionalities that we use in our construction. For a detailed
description of TPMs and their features, refer to [1]. Version
1.2 of the TCG specification introduced a new protection
level for keys protected by a TPM:Certifiable Migratable
Keys (CMKs). A CMK is a migratable key in which the
migration is restricted — when the key is generated (in-
side a TPM), a list of public keys of “migration authori-
ties” is committed to, and any migration of this CMK must
be done by encrypting the private portion of the key using
one of these previously-specified public keys. Since the au-
thorized public keys are specified when the CMK is cre-
ated, the CMK is bound to this set of migration authorities
for the lifetime of the key, and the TPM can certify (sign)
the key along with the migration authority list; therefore,
any receiver of this certificate obtains assurance that the
key exists only in the original TPM or in places authorized
by one of this fixed set of migration authorities. The in-
tended use of CMKs in the TCG specification is that a pub-
lic, trusted migration authority would publish a Migration
Practice Statement (similar to a Certificate Practice State-
ment for an X.509 Certification Authority), so can provide

assurance that CMKs are only migrated to TPM-protected
environments. In Section 3.1 we will show how CMK op-
erations can be used to migrate a key to a specific TPM-
protected environment without needing a trusted migration
authority.

Ideally, we would like to design protocols that work with
existing, standard TPMs. However, that is not possible
in this case, and we require three modifications to a stan-
dard TPM. Two of these modifications are trivial, and the
third would be easy to accomplish but is a more substantial
change.

The first trivial change is to add the capability for using a
TPM secret as a key to HMAC, which we will use as a PRF
with an unknown seed. Since TPMs have protected storage
for secrets and must support HMAC for other operations,
this is simply a matter of adding the right command to the
TPM’s command set.

The second trivial change is the creation of a new key
type, usable only as a secret key for HMAC in the com-
mand we just described — consistent with the TCG spec-
ification naming, we suggest a newTPM_KEY_USAGE
value with the nameTPM_KEY_HMAC. We note that this
change is entirely optional, but we feel it is desirable
for two reasons: First, as a valid key type sent to the
TPM_CMK_CreateKey command, we could avoid the
costly operation of generating a new asymmetric key, which
is completely unnecessary in our situation. Second, good
cryptographic practice states that keys should be used for
a single purpose — while we could, for example, create a
signing key and use this as a shared secret (this is in fact
what we do in Section 4 to benchmark our operations on an
existing TPM), it unnecessarily complicates security argu-
ments when we have to consider the impact of operations
unrelated to our intended use for this key.

Our third TPM modification is more significant, and is
necessary due to the following chicken-and-the-egg prob-
lem: Our overall goal is to instantiate a random oracle,
and make rigorous security arguments which are free of the
kinds of problems that arise in instantiating random oracles
in the standard model. However, the standard TPM facility
for migrating a CMK uses RSA encryption with OAEP, a
random-oracle designed scheme that uses a standard hash
function (SHA-1 in the TPM) for the random oracle. While
such a systemmaybe secure, it does not allow us to have
a properly self-contained security proof. Fortunately, inor-
der to perform CMK migration, we only need encryption
and signature capability, and techniques are known for both
of these that are secure in the standard model (not relying
on random oracles). For concreteness, we assume that en-
cryption is done using the Cramer-Shoup CCA-secure en-
cryption scheme [11] and signatures are performed using
Fischlin’s modification [12] to the Cramer-Shoup signature
scheme [10]. Both of these schemes have been proven se-

cure without the need for random oracles, with security that
is based on standard complexity assumptions (the decisional
Diffie-Hellman and strong RSA assumptions) and requir-
ing operations of modular exponentiation, which must be
already supported by TPMs due to the use of RSA in a stan-
dard TPM.

3 Implement a Random Oracle with a TPM

In the random oracle model, parties are assumed to have
access to a random functionH : {0, 1}

∗

→ {0, 1}
∗ which

is universal and consistent across all parties, so that if Alice
requests a valueH(x) from the oracle and Bob later also re-
questsH(x), they should obtain the same value. However,
the function is truly random, so having sampled several val-
ues fromH should not give any information about the value
of H on values which have not been specifically requested
from the oracle. In practice, the domain and range of the
random oracle are determined by the requirements of the
cryptographic scheme using the random oracle, and are typ-
ically fixed-length binary strings where the length depends
on a security parameter.

Due to the popularity of the random oracle methodology,
whereby a lot of encryption and signature schemes were
proven secure in this model, efforts [8] were made to iden-
tify properties that are required for real-world instantiation
of these oracles. Refer to our full paper [13] for a detailed
literature survey on the topic. Various candidates for instan-
tiation of random oracles in the real world have been pro-
posed. Various researchers [4, 5] have shown that a pseu-
dorandom function (PRF) is a natural candidate for replac-
ing a random oracle. We propose using a slightly modified
TPM to compute the PRF while keeping the seed secret.
Specifically, we use Certifiable Migratable Keys (CMKs),
which are keys certified by the TPM and which can be used
for computations at the request of the host, but are kept se-
cret within the TPM. Since the TPM already possesses an
internal HMAC engine for calculating and storing HMAC
digests, it is simple enough to add an interface for per-
forming HMAC operations using CMKs, as we described
in Section 2. Since HMAC is proven to be a PRF under the
assumption that the underlying compression function is a
PRF [2, 4], we can use the CMK as the seed for an HMAC-
based PRF when all parties have access to TPMs. While
there are some concerns regarding whether HMAC is a PRF
when using specific hash functions with recently discovered
weaknesses, such as MD5 and SHA1 [14], we assume that
an appropriate underlying hash function is used.

3.1 Establish a Shared Secret with CMKs

In this section, we describe how standard TPM opera-
tions on CMKs can be used to establish a secret that is

shared between the TPMs of a fixed set of parties with
known public keys for non-migratable keypairs. As de-
scribed earlier, when a CMK is created it is bound to a list
of public keys of migration authorities (MAs), and any mi-
gration of this CMK must be coordinated by one of these
migration authorities. In a typical TPM application, the MA
would be a public entity, trusted to migrate keys in accor-
dance with a published migration policy. In our case, we
avoid having an independent MA by migrating keys “under
the authority” of a non-migratable storage key on a destina-
tion platform — since this isn’t an actual MA key (a key of
typeTPM_KEY_MIGRATE), it cannot be further migrated,
so is effectively contained within that particular destination
platform.

In the following, we have partiesA1, A2, · · · , An. Each
party Ai has a TPMTi, a properly certified identity key
Ii, and a non-migratable storage keyPi which will be the
parent of the shared secret inAi’s protected storage hi-
erarchy. The shared secret will be generated internally
to T1, and then transferred (migrated) securely to TPMs
T2, T3, · · · , Tn. We break down the shared secret establish-
ment into three phases, destination certification, secret cre-
ation/migration, and destination secret installation, which
we describe below. We omit the security proof of our con-
struction which is available in the full version [13] of our
paper.

Destination Certification. For eachi ∈ {2, · · · , n}, Ai

uses the TPM commandTPM_CertifyKey to cre-
ate a certification for keyPi using identity keyIi. Note
that this can be done in advance — any time afterPi

andIi have been created.

Secret Creation/Migration. A1 collects all of the pub-
lic keys corresponding toP2, · · · , Pn, along with
their certifications and corresponding identity keys,
and verifies that these are all certified as non-
migratable storage keys using an identity key that
is in turn certified by a trusted PrivacyCA. This
list of public keys is then used as the list of au-
thorized migration authorities when the CMKK is
created usingTPM_CMK_CreateKey. A1 uses
TPM_CertifyKey2 to create a certification for key
K using identity keyI1. To transferK, A1 uses
TPM_CMK_CreateBlob for each destination key
P2, · · · , Pn to create migration blobs (re-encrypted pri-
vate keys2) for each destination, and transmits the ap-
propriate blob along with a copy ofK ’s certification
and the list of certified parent keysP2, · · · , Pn to each
of A2, · · · , An.

2Note that actual migration is slightly more complex, with each migra-
tion blob having an associated “random part” which is usefulin certain
scenarios — in our situation, we simply treat the migration blob and ran-
dom part as a single unit of data, and transmit them together.

Destination Secret Installation. When Ai (for i ∈
{2, · · · , n}) receives the migration blob andK ’s cer-
tification, it usesTPM_ConvertMigrationBlob
which installsK under parent keyPi in Ai’s storage
hierarchy. Next,Ai verifies that keyK is a CMK cer-
tified by an identity key which is in turn certified by a
trusted PrivacyCA, and that its migration is restricted
to keysP2, · · · , Pn, each of which is also verified as a
non-migratable storage key certified by an identity key
that is certified by a trusted PrivacyCA.

Theorem 3.1 If T1, · · · , Tn are properly functioning, non-
compromised TPMs, and if the PrivacyCAs certified only
legitimate TPM-bound identity keys, then at the end of this
protocol each TPM has a copy ofK which is internally
usable and not available to other TPMs or outside of the
TPM-protected environment.

3.2 A TPM-Oracle

In the previous section, we described how parties
equipped with TPMs can establish a shared secret in such
a way that all parties have assurance that the secret is only
available to a fixed list of parties and only within a TPM-
protected environment. In this section, we will describe
how to use this shared secret within a TPM to create what
we refer to as a “TPM-Oracle” — a computation done
inside the TPM that is polynomial-time indistinguishable
from a random oracle. The following definitions formalize
several important concepts.

Definition 3.1 Let l(k) andm(k) be polynomially bounded
length functions, wherek is interpreted as a security param-
eter, and letXk(x) for k ∈ Z andx ∈ {0, 1}

l(k) be a col-
lection of random variables (an “ensemble”) drawn from
{0, 1}

m(k). We writeXk to denote the collection of random
variablesXk(x) with k fixed, and writeD(Xk) to denote an
algorithmD that can sample random variablesXk(x) for

anyx ∈ {0, 1}
l(k). A distinguisher for ensemblesXk and

Yk is an algorithmD with boolean output such that for all
sufficiently largek,

|Prob[D(Xk) = 1] − Prob[D(Yk) = 1]| >
1

p(k)
,

wherep(k) is some polynomial ink. We say ensemblesXk

and Yk are computationally indistinguishable if there ex-
ists no probabilistic polynomial time distinguisher for these
ensembles.

Definition 3.2 Consider a family of functionsPRs :

{0, 1}
l(k)

→ {0, 1}
m(k) that is indexed by a variables ∈

{0, 1}
k, which we call the seed. For this family of functions,

if we selects uniformly from{0, 1}
k then this defines an

ensemblePRk(x) in a natural way. We also consider the

ensemble where eachRk(x) is uniformly distributed over

{0, 1}
m(k). Function familyPRs is a pseudorandom func-

tion family (PRF) ifPRk is computationally indistinguish-
able fromRk.

The desired random-oracle query is a call to a function
H : {0, 1}a(k) → {0, 1}b(k), wherek is a security pa-
rameter, anda(k) andb(k) are polynomially-bounded func-
tions — note that some random-oracle-designed protocols
require multiple random oracles with different domain and
range sizes, and in this paper we consider these as indepen-
dent oracles with separate and independent shared secrets,
but each with its own well-defined domain and range size.
Our TPM-Oracle is denotedT O : {0, 1}a(k) → {0, 1}b(k).

We assume that our HMAC engine uses a fixed Merkle-
Damg̊ard-style hash function that has an underlying com-
pression function that usesc(k)-bit blocks and produces
d(k)-bit digests, defining a functionHMAC : {0, 1}c(k) ×
{0, 1}∗ → {0, 1}d(k), and we use notationHMAC(s,m)
to denote evaluating HMAC using secrets and messagem.
Recall that our shared secret, established using CMK op-
erations, isK ∈ {0, 1}c(k), and we use a TPM-Oracle to
answer queries of the formH(x) for some partyAi. Fi-
nally, let bin(b, x) denote theb-bit binary representation of
x (assumingx < 2b). Our TPM-Oracle is then defined as
follows:

T O(x)

m ←
⌈

b(k)
d(k)

⌉

b ← ⌈log2(m)⌉
A←HMAC(K, bin(b, 0)||x)||HMAC(K, bin(b, 1)||x)

|| · · · ||HMAC(K, bin(b,m − 1)||x)
return The firstb(k) bits ofA

T O is a standard secure extension of a PRF, and is itself a
secure PRF if the underlying building block is a secure PRF.
Bellare has shown that HMAC is a PRF if the underlying
compression function is a PRF [2], so we get the following
lemma regardingT O.

Lemma 3.1 If the compression function used by HMAC is a
pseudorandom function, thenT O is a pseudorandom func-
tion.

3.3 Security of the TPM-Oracle

We now consider the security of our complete system, in-
cluding the secret establishment and use of the TPM-oracle,
and provide a proof to show how this system provides se-
curity guarantees equivalent to a true random oracle with
respect to a polynomial-time adversary.

We define a new construction called aHybrid PRF sys-
tem which comprises two parts. First a Key Encapsulation

Mechanism (KEM) is used to encrypt a random key. Then
the key is used as input to a Pseudorandom Function (PRF)
to produce pseudorandom output. We first present defini-
tions of Key Encapsulation Mechanism as given by Cramer
and Shoup [11] and then expand this to a description of our
Hybrid PRF functionality.

Definition 3.3 Key Encapsulation Mechanism (KEM)
consists of the following polynomial time algorithms:

• Key Generation Algorithm: A probabilistic algorithm
that generates public and private keys(pk, sk) based
on security parameterλ. We also define a key space
KK which is determined byλ, and is typically the set
of binary strings of a length which can be encrypted
underpk.

(pk, sk) ← KEM.Gen(1λ)

• Encryption Algorithm: A probabilistic algorithm that
generatesK ∈ KK and the encryptionφ, of K.

(K,φ) ← KEM.Encpk()

• Decryption Algorithm: A deterministic algorithm that
decrypts a ciphertextφ and returns eitherK (if the
decryption succeeds) or⊥ (if it doesn’t).

K ← KEM.DECsk(φ)

Definition 3.4 A Hybrid-PRF consists of the following:

1. Key Generation Algorithm: A probabilistic algorithm
that generates public and private keys(pk, sk). The
public key defines the KEM key spaceKK .

(pk, sk) ← HPRF.Gen(1λ)

2. Encryption Algorithm: A probabilistic algorithm, that
givenpk, generates and encrypts a random keyK ∈
KK with the corresponding secret key,sk and returns
φ, the encrypted key.

(K,φ) ← HPRF.Encpk()

3. Decryption Algorithm: A deterministic algorithm that
returnsK as the decryption ofφ.

K ← HPRF.Decsk(φ), output⊥ if K /∈ KK

4. PRF algorithm: A deterministic algorithm, that given
a keyK and a message,m, computes a hash of the
message using the key as input to a keyed PRF.

r ← HPRF.FK(m)

Security of schemes for these functionalities is defined in
terms of games that an adversary plays against the scheme,
and we useAdvKEM , AdvPRF , andAdvHPRF to denote
the advantage of the best adversary in games for KEM, PRF,

and HPRF, respectively. These systems are secure if the ad-
versary’s advantage is negligible. These games and defini-
tions are standard and can be found in many places in the
cryptographic literature, or an interested reader can find def-
initions and discussion in the full version of this paper [13].

Theorem 3.2 If a given PRF is secure against the standard
PRF game and the KEM used to encrypt the keyK is CCA-
secure, then the hybrid PRF construction is secure. In par-
ticular, AdvHPRF ≤ 2AdvKEM + AdvPRF .

The proof of this theorem can be found in our full pa-
per [13]. In summary, from Theorem 3.1, Theorem 3.2 and
Lemma 3.1, we obtain the following result.

Corollary 3.1 Assume that we have properly functioning,
secure TPMs that use the above technique for creating a
TPM Oracle. If the hash function used by HMAC has a
pseudorandom comrpession function, and the CMK transfer
scheme uses a CCA-secure public key cryptosystem, then
any polynomial time algorithm secure in the random oracle
model is secure in the TPM oracle model.

4 Benchmarks and Performance Analysis

In this section, we report some benchmarks on basic
operations performed by an existing TPM, and use these
benchmarks to estimate the performance of our protocol.
We must extrapolate from basic benchmarks due to our pro-
tocol’s requirement of currently unavailable functionality
(specifically, the use of HMAC with an internal TPM se-
cret key). For our tests, we used a desktop machine with
an Intel D945GTP-LKR motherboard, which incorporates
an version 1.2 TPM made by STMicroelectronics (model
ST19WP18). We ran each of our timed operations at least
4 times, and give the average time for each operation in the
following table.

Operation Time (sec)

TPM_LoadKey2 3.03
TPM_CreateKey 33.40
TPM_Seal 0.39
TPM_Unseal 1.19
TPM_CertifyKey 1.39

Only theTPM_CreateKey showed any significant vari-
ability in the time between different tests, which is under-
standable due to the probabilistic nature of generating RSA
keys. While creating a new asymmetric key is currently
the only way to establish a CMK and hence a shared se-
cret, which is why we include that time above, our protocol
does not require an asymmetric key as a CMK — as we
discussed in Section 2 we suggest the use of a simple ran-
domly generated secret, in which case the time for creating

such a CMK would be dominated by the time to wrap (en-
crypt) this secret using the parent key. To estimate the time
required for this, we benchmarked theTPM_Seal opera-
tion, which does essentially the same operations, and we use
this time as an estimate of how long a CreateKey operation
would take with our new type of key. We assume that verifi-
cation of certificates by the host platform takes insignificant
time compared to these TPM operations — RSA keys used
by the TPM use a fixed public exponent of 65,537, and on a
modern PC-class processor such a verification can be done
in less than a millisecond.

Performance of secret creation/migration:As described
above, we estimate the time of creating our special CMK
key using theTPM_Seal command, which takes 0.39 sec-
onds, and certifying this key requires loading both the CMK
and the appropriate AIK (3.03 seconds each) and then doing
the certification (1.39 seconds), for a total creation and cer-
tification time of 7.84 seconds. A migration blob is created
for each of then destinations, taking a total of3.03(n − 1)
seconds. Combining these results, the total time for the se-
cret creation/migration phase is

4.81 + 3.03n seconds.

In particular, for a two-party protocol, the estimated timeis
10.87 seconds.

Performance of destination secret installation:On each
destination receiving the CMK secret, the destination TPM
must do a blob conversion, taking 1.58 seconds (an unseal
followed by seal). The remaining operations are certificate
verifications, which are done by the host processor rather
than the TPM, so take insignificant time compared to the
1.58 seconds for the blob conversion.

Performance of TPM-Oracle queries: There is no cur-
rent user interface to the HMAC engine within a TPM, but
there is a direct way to use the SHA1 engine. We tested
SHA1 on inputs of size 16k, 32k, 48k, and 64k, and found
a very consistent increase of 1.935 seconds per 16k incre-
ment. Based on this, we estimate that one application of the
internal SHA1 compression function takes no more than 7.6
milliseconds — note that the since the hashed data had to be
passed into the TPM over a relatively slow interface, this
timing may be as much constrained by platform-to-TPM
communication speed as it is by the computational speed
of the SHA1 engine, which would not be as much an issue
with our usage. Based on these benchmarks, we see that
if our TPM-oracle is answering queries from a domain that
requiresbi input blocks to hash, and we are generating an
output that needsbo output blocks, then the time would be
at most7.6(bi + 3)bo ms.

To make this concrete, note that if we are creating a
TPM-oracle that takes 1024-bit inputs (sobi = 3) and pro-
duces 160-bit outputs (sobo = 1), each random oracle

query would take no more than 45.6 milliseconds.

In summary, our TPM-oracle using current hardware takes
around 10 seconds of setup time, and less than 100 mil-
liseconds for most realistically sized TPM-oracle queries.
We feel that this is quite practical, and future improvements
to TPMs which reduce the setup time would only make it
more clearly practical.

5 Conclusion and Open Problems

In this paper, we have shown how a random oracle can
be instantiated in a multi-party setting if each party has ac-
cess to a trusted platform module (TPM). Utilizing a special
kind of key called Certifiable Migratable Key (CMK) that
can be certified by a TPM and migrated to other TPMs, we
can instantiate a random oracle using HMAC-based pseu-
dorandom functions. Our method requires a few modifi-
cations to the TPM specification, but none of the modifica-
tions are particularly difficult or unreasonable. We provided
rigorous proofs that under an assumption of secure TPMs
(and standard complexity assumptions) our construction is
computationally indistinguishable from a random oracle to
a polynomial-time attacker. In the process, we formally de-
fine and prove properties about a new cryptographic prim-
itive which we call a “hybrid pseudorandom function” that
may be of independent interest.

An interesting open problem is to improve upon the se-
cret establishment process. Currently, if we wish to avoid
having an active trusted migration authority, then public
keys for all parties must be known at the beginning of
the computation, which is particularly difficult in the case
of non-interactive zero-knowledge proofs where we don’t
know who the verifier may be. This is also a problem for dy-
namic multi-party settings, where parties may join or leave
the group during the execution of the protocol. Unfortu-
nately, this seems to be a very difficult problem if the parties
are mutually untrusting — there is no obvious way to have a
key that can migrate multiple hops without a transitive trust
relationship, which is not directly available with the current
TPM design. An additional problem related to secret es-
tablishment is that, even in a static case where all keys are
known, the secret distribution scheme does not scale well as
the originating party must send the packaged secret to every
participant, takingΘ(n) time. A tree-structured distribution
scheme with depthO(log n) would be significantly better,
but the same problem with transitive trust and forwarding
migrating keys is encountered.

References

[1] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and
G. Proudler.Trusted Computing Platforms: TCPA Technol-
ogy in Context. Prentice Hall, Upper Saddle River, NJ, 2003.

[2] M. Bellare. New proofs for NMAC and HMAC: Security
without collision-resistance. InCRYPTO, pages 602–619,
2006.

[3] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable
random-oracle-model scheme for a hybrid-encryption prob-
lem. InEUROCRYPT, pages 171–188, 2004.

[4] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash func-
tions for message authentication. InCRYPTO, pages 1–15,
1996.

[5] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom
functions revisited: The cascade construction and its con-
crete security. InProceedings of the 37th Symposium on
Foundations of Computer Science (FOCS), pages 514–523,
1996.

[6] M. Bellare and P. Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. InACM Con-
ference on Computer and Communications Security, pages
62–73, 1993.

[7] M. Bellare and P. Rogaway. The exact security of digital
signatures - How to sign with RSA and Rabin. InEURO-
CRYPT, pages 399–416, 1996.

[8] R. Canetti. Towards realizing random oracles: Hash func-
tions that hide all partial information. InCRYPTO, pages
455–469, 1997.

[9] R. Canetti, O. Goldreich, and S. Halevi. The random oracle
methodology, revisited.J. ACM, 51(4):557–594, 2004.

[10] R. Cramer and V. Shoup. Signature schemes based on the
strong RSA assumption.ACM Transactions on Information
and System Security, 3(3):161–185, 2000.

[11] R. Cramer and V. Shoup. Design and analysis of practi-
cal public-key encryption schemes secure against adaptive
chosen ciphertext attack.SIAM J. Comput., 33(1):167–226,
2003.

[12] M. Fischlin. The Cramer-Shoup Strong-RSA signature
scheme revisited. InPublic-Key Cryptography (PKC), pages
116–129, 2003.

[13] V. Gunupudi and S. R. Tate. Random oracle instantiation in
distribued protocols using trusted platform modules. Techni-
cal report, University of North Texas, USA, 2007. Available
at http://cops.csci.unt.edu/publications/.

[14] J. Kim, A. Biryukov, B. Preneel, and S. Hong. On the secu-
rity of HMAC and NMAC based on HAVAL, MD4, MD5,
SHA-0 and SHA-1. InProceedings of the 5th Int’l Confer-
ence on Security in Communications Networks (SCN), 2006.

[15] U. Maurer, R. Renner, and C. Holenstein. Indifferentiabil-
ity, impossibility results on reductions, and applications to
the random oracle methodology. InTheory of Cryptography
(TCC), pages 21–39, 2004.

[16] V. Shoup. OAEP reconsidered. InCRYPTO, pages 239–259,
2001.

[17] Trusted Computing Group. Website.
http://www.trustedcomputinggroup.org.

