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Abstract. In recent years one of the most active research areas in applied cryp-
tography is the study of techniques for creating a group signature, a cryptographic
primitive that can be used to implement anonymous authentication. Some vari-
ants of group signature, such as traceable signature, and authentication with vari-
able anonymity in a trusted computing platform, have also been proposed. In
this paper we propose a traceable signature scheme with variable anonymity. Our
scheme supports two important properties for a practical anonymous authentica-
tion system, i.e., corrupted group member detection and fair tracing, which have
unfortunately been neglected in most group signature schemes in the literature.
We prove the new scheme is secure in the random oracle model, under the strong
RSA assumption and the decisional Diffie-Hellman assumption.
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1 Introduction

In this paper, we present new techniques for performing anonymous authentication, in
which authenticated users receive credentials from a designated group manager, and in
later interactions a user can prove possession of such a credential in a privacy-preserving
manner. Anonymous authentication has been one of the most active research areas in
applied cryptography in recent years.

The most heavily studied type of anonymous authentication system is the “group
signature scheme,” which provides a well-defined set of services and security guaran-
tees that we describe in more detail below.3 However, several authors have identified
various desirable properties not provided by the group signature definition, and have
introduced variants of this basic scheme including work on “anonymous credential sys-
tems” [6], “traceable signatures” [14], and a system designed for trusted computing
platforms called “direct anonymous attestation” [4]. Our contribution in this paper is
to show how the well-known group signature scheme of Ateniese et al. [1], which we
call the ACJT scheme, can be modified to a traceable signatureso that it supports a par-
ticularly useful extension from the work on direct anonymous attestation that allows a
prover and verifier to agree on a variable degree of signaturelinkability. Our modifica-
tions to the ACJT scheme replace operations with modified formulas that have the same
computational complexity, so our system preserves the efficiency of the ACJT scheme
while providing a unique set of features which is useful in many situations.

⋆ This research is supported in part by NSF award 0208640.
3 An extensive bibliography of group signature literature can be found at http://www.i2r.a-

star.edu.sg/icsd/staff/guilin/bible/group-sign.htm



1.1 Background

Group signature is a privacy-preserving signature scheme introduced by Chaum and
Heyst in 1991 [10]. In such a scheme, a group member can sign a message on behalf of
the group without revealing his identity. Only the group manager or the specified open
authority can open a signature and find its originator. Signatures made by the same user
cannot be identified as from the same source, i.e, “linked”. Recently, group signature
has attracted considerable attention, and many schemes have been proposed in the liter-
ature (e.g., [8, 1, 6, 7, 5]). Creating an anonymous authentication scheme from a group
signature is simple: the group is simply the set of authorized users, and authentication
is performed by a group member placing a group signature on a challenge (nonce) sent
by the service requiring authentication. From the properties of group signatures, all the
service or an attacker can learn is that the signature was made by a valid group member
(i.e., an authorized user).

However, group signature does not provide certain important features for a more
hostile or realistic environment where group members couldbe malicious or compro-
mised. In such settings, an efficient mechanism should be available to reveal all the
malicious behaviors of corrupted members. In group signature, identification of signa-
tures from corrupted members has to be done by opening all signatures. This is either
inefficient (centralized operation by the group manager), or unfair (unnecessarily identi-
fying all innocent group members’ signatures). To overcomethis shortcoming, Kiayias
et al.proposed a variant of group signature, called traceable signature [14]. They define
“traceability” as the ability to reveal all the signatures signed by a group member with-
out requiring the open authority to open them. Tracing can bedone by “trace agents”
distributively and efficiently. They also introduced the concept of “self-traceability”, or
“claiming”. That is, a group member himself can stand out, claiming a signature signed
by himself without compromising his other signatures and secrets. The subtlety lies in
that a group member should be able to do this without keeping all one time random
values in his signatures. In group signature, a group membermay also be able to claim
his signatures, but he has to keep all his transaction transcripts including some random
values, making “claiming” highly impractical and a security risk.

The Trusted Computing Group [15] has recently proposed an architecture called
the “trusted computing platform” to enhance computer security. A trusted computing
platform is a computing device integrated with a cryptographic chip called the trusted
platform module (TPM). The TPM is designed and manufacturedso that all other re-
mote parties can trust cryptographic computing results from this TPM. To protect the
privacy of a TPM owner, an anonymous authentication technique, called Direct Anony-
mous Attestation (DAA), has been deployed in recent versions of the trusted computing
platform. DAA can be seen as a group signature scheme withoutopenability. DAA in-
troduces the notion of “variable anonymity,” which is conditionally linkable anonymous
authentication: the same TPM will produce linkable signatures for a certain period of
time. The period of time during which signatures can be linked can be determined by the
parties involved and can vary from an infinitesimally short period (leading to completely
unlinkable signatures) to an infinite period (leading to completely linkable signatures).
Signatures made by the same user in different periods of timeor to different servers
cannot be linked. By setting the linkability period to a moderately short time period (a
day to a week) a server can potentially detect if a key has beencompromised and is
being used by many different users, while still offering some amount of unlinkability.



1.2 Our results

In the previous section we briefly introduced some of the available techniques for
anonymous authentication. Numerous constructions with different features have been
proposed to accommodate different properties. This raisedthe question which we ad-
dress in this paper: Can we devise a construction which combines the features from
different authentication primitives? More specifically, can we have a traceable signature
scheme which also supports variable anonymity? So far as we know, no such scheme
has been proposed to work in this manner, probably because variable anonymity is a
recently identified feature in anonymous authentication.

We consider the combination of traceability and variable anonymity to be particu-
larly important for anonymous authentication. Variable anonymity is the only way key
sharing violations can be detected, while traceability is the efficient and fair way to
reveal all malicious behaviors. More specifically, while the standard group signature
scheme can use the open authority to identify a user that performs malicious actions,
consider what happens when one authorized user shares his authentication credential
with a set of co-conspirators. For example, a large set of users could share a single sub-
scription to some pay web site. Since all authentications are completely unlinkable in
a group signature scheme, it would be impossible to determine whether 1000 requests
coming in during a day are from 1000 different valid users or from 1000 people sharing
a single valid credential. Introducing linkability for a limited time period is the only
way to detect this, and if an unusually high number of requests using the same creden-
tial come in from different IP addresses during the same day,then this could be flagged
as potentially malicious behavior. After that, the open authority can open the signatures
to determine the real owner of this credential, and the tracing trapdoor associated with
this credential is further revealed to trace agents by the group manager. Then the trace
agents reveal all the behaviors associated with the trapdoor for further investigation. At
the same time, a tracing trapdoor may be published on the revocation list for verifiers
to identify future requests by this member. In our opinion, to build up a realistic anony-
mous authentication system, the combination of traceability and variable anonymity is
a must.

In this paper, we present our construction for traceable signature that supports vari-
able anonymity. Our construction is built up from the well-known ACJT group signa-
ture [1]. The traceable signature due to Kiayiaset al., which we refer to as the KTY
scheme in this paper, is also built up from the ACJT scheme. However, our construction
improves on the KTY scheme in three aspects. First, we adopt the same group member-
ship certificate as in the ACJT scheme. The KTY scheme changesthe group certificate
in the ACJT scheme to integrate the tracing trapdoor. We showthis change is unnec-
essary by identifying that tracing trapdoors in fact are already available in the ACJT
scheme. Second, our tracing mechanism is more efficient thanthe KTY scheme. Our
scheme uses a hash function to create generators while the KTY scheme uses expensive
exponentiation computation. Finally, our scheme supportsvariable anonymity while the
KTY scheme does not. Thus, our scheme is more efficient and flexible than the KTY
scheme.

The rest of this paper is organized as follows. The next section introduces a concrete
model for our signature scheme. Section 3 reviews some definitions, cryptographic as-
sumptions, and building blocks of our proposed scheme. Section 4 presents the pro-



posed scheme. Security properties are considered in Section 5. Finally, we summarize
and give conclusions in section 6.

2 The Model

This section introduces the model for traceable signature [14], which is a variant of the
group signature model (e.g. [1]). Both of these two models include operations for Setup,
Join, Sign, Verify, and Open. The traceable signature modelhas additional operations
for traceability: Reveal, Trace, Claim (Self-trace) and Claim-Verify.

Definition 1. A traceable signature is a digital signature scheme with four types of
participants: Group Manager, Group Members, Open Authorities, and Trace Agents. It
consists of the following procedures:

– Setup: For a given security parameterσ, the group manager produces system-
wide public parameters and a group manager master key for group membership
certificate generation.

– Join: An interactive protocol between a user and the group manager. The user
obtains a group membership certificate to become a group member. The public
certificate and the user’s identity information are stored by the group manager in a
database for future use.

– Sign: Using its group membership certificate and private key, a group member
creates a group signature for a message.

– Verify : A signature is verified to make sure it originates from a legitimate group
member without the knowledge of which particular one.

– Open: Given a valid signature, an open authority discloses the underlying group
membership certificate.

– Reveal: The group manager outputs the tracing trapdoor associatedwith a group
membership certificate.

– Trace: Trace agents check whether a signature is associated with atracing trap-
door.

– Claim (Self-trace): A group member creates a proof that he created a particular
signature.

– Claim Verify : A party verifies the correctness of the claiming transcript.

Similar to group signatures, a traceable signature scheme should satisfy the following
properties:

– Correctness: Any valid signature can be correctly verified by the Verify protocol
and a valid claiming proof can be correctly verified.

– Forgery-Resistance: A valid group membership certificate can only be created by
a user and the group manger through Join protocol.

– Anonymity: It is infeasible to identify the real signer of a signature except by the
open authority or if the signature has been claimed.

– Unlinkability : It is infeasible to link two different signatures of the same group
member.

– Non-framing: No one (including the group manager) can sign a message in such a
way that it appears to come from another user if it is opened.

– Traceability: Given a tracing trapdoor, trace agents can reveal all signatures asso-
ciated with the trapdoor. A group member can claim (self-trace) his signatures.



3 Definitions and Preliminaries

This section reviews some definitions, widely accepted complexity assumptions that we
will use in this paper, and building blocks for our construction.

Definition 2 (Special RSA Modulus).An RSA modulusn = pq is called special if
p = 2p′ + 1 andq = 2q′ + 1 wherep′ andq′ also are prime numbers.

Definition 3 (Quadratic Residue Group QRn). Let Z∗

n be the multiplicative group
modulon, which contains all positive integers less thann and relatively prime ton.
An elementx ∈ Z∗

n is called aquadratic residueif there exists ana ∈ Z∗

n such that
a2 ≡ x (modn). The set of all quadratic residues ofZ∗

n forms a cyclic subgroup of
Z∗

n, which we denote byQRn. If n is the product of two distinct primes, then|QRn| =
1
4 |Z

∗

n|.

The security of our techniques relies on the following security assumptions which
are widely accepted in the cryptography literature (see, for example, [2, 13, 8, 1]).

Assumption 1 (Strong RSA Assumption)Let n be an RSA modulus. TheFlexible
RSA Problemis the problem of taking a random elementu ∈ Z∗

n and finding a pair
(v, e) such thate > 1 and ve = u (modn). TheStrong RSA Assumptionsays that
no probabilistic polynomial time algorithm can solve the flexible RSA problem with
non-negligible probability.

Assumption 2 (Decisional Diffie-Hellman Assumption forQRn) Letn be a special
RSA modulus, and letg be a generator ofQRn. For the two distributions(g, gx, gy, gxy),
(g, gx, gy, gz), x, y, z ∈R Zn, there is no probabilistic polynomial-time algorithm that
distinguishes them with non-negligible probability.

The building blocks of our technique arestatistical honest-verifier zero knowledge
proofs of knowledgerelated to discrete logarithms overQRn [9, 8]. They may include
protocols for problems such as the knowledge of the discretelogarithm, the knowledge
of equality of two discrete logarithms, the knowledge of thediscrete logarithm that lies
in certain interval, etc. We introduce one of them here. Readers may refer to the original
papers for more details.

Protocol 1 Let n be a special RSA modulus,QRn be the quadratic residue group
modulon, andg be a generator ofQRn. ǫ, l, lc are security parameters that are all
greater than 1.X is a constant number. A prover Alice knowsx, the discrete loga-
rithm of T1, and x ∈ [X − 2l, X + 2l]. Alice demonstrates her knowledge ofx ∈
[X − 2ǫ(l+lc), X + 2ǫ(l+lc)] as follows.

1. Alice picks a randomt ∈ ±{0, 1}α(l+lc) and computesT2 = gt (mod n). Alice
sends(T1, T2) to a verifier Bob.

2. Bob picks a randomc ∈ {0, 1}lc and sends it to Alice.
3. Alice computesw = t − c(x − X), andw ∈ ±{0, 1}α(l+lc)+1. Alice sendsw to

Bob.
4. Bob checksw ∈ ±{0, 1}α(l+lc)+1 and

gw−cXT c
1 =? T2 (mod n).

If the equation holds, Alice proves knowledge of the discrete logarithm ofT1 lies in
the range[X − 2ǫ(l+lc), X + 2ǫ(l+lc)].



Remark 1.It should be emphasized that while Alice knows a secretx in [X−2l, X+2l],
the protocol only guarantees thatx lies in the extended range[X−2ǫ(l+lc), X+2ǫ(l+lc)].

Remark 2.Using the Fiat-Shamir heuristic [12], the protocol can be turned into a non-
interactive “signature of knowledge” scheme, which is secure in the random oracle
model [3]. We will introduce the proposed scheme in the manner of “signature of knowl-
edge” in next section.

4 Traceable Signature

Our construction is built upon the ACJT group signature scheme. We adopt the same
system parameters, group certificates, and Join protocol. The Sign and Verify protocols
have been changed to support traceability and variable anonymity. In the following
presentation, we use the same notation as in the original paper to make it easier for
readers to see how we convert the ACJT scheme into a traceablesignature scheme.

4.1 The System Parameters

The following system parameters are set up when the system isinitialized and the group
manager key is generated.

– A special RSA modulusn = pq, p = 2p′+1, q = 2q′ +1, with p, p′, q, q′ all prime
– Random elementsa, a0, g ∈ QRn of orderp′q′, i.e., these numbers are generators

of QRn

– Security parameters used in protocols:ǫ > 1, k, lp
– Length parametersλ1, λ2, γ1, γ2. λ1 > ǫ(λ2+k)+2, λ2 > 4lp, γ1 > ǫ(γ2+k)+2,

andγ2 > λ1 + 2
– Integer rangesΛ =]2λ1 − 2λ2 , 2λ1 + 2λ2 [ andΓ =]2γ1 − 2γ2 , 2γ1 + 2γ2 [
– Three strong collision-resistant hash functions:H1,H2 : {0, 1}∗ → Z∗

n, andH3 :
{0, 1}∗ → {0, 1}k

– A message to be signed:m ∈ {0, 1}∗

– The public parameters are(n, a, a0, g).
– The secret parameters for the group manager are(p′, q′).

The open authority creates his ElGamal public keypair [11],i.e., private keyx and
public keyy such thaty = gx (mod n).

4.2 Variable Anonymity Parameter

To achieve variable anonymity, each signature will belong to a “linkability class” that
is identified using a “linkability class identifier,” or LCID. All signatures made by the
same group member with the same LCID are linkable, and in an interactive authen-
tication protocol the LCID can be negotiated and determinedby the two parties. For
example, to link authentications to a single server over a single day, the LCID could
simply be the server name concatenated with the date. If the same LCID is always used
with a particular server (e.g., the server name), then the result is a pseudo-anonymity
system. If complete anonymity is desired, the signer can simply pick a random LCID
(which is possible if the server isn’t concerned with linkability and allows arbitrary
LCIDs).



4.3 Join Protocol

The same Join protocol is adopted as in the original scheme. Agroup membership
certificate is in the form ofAi = (axia0)

1/ei (mod n) wherexi ∈ Λ is the secret of
the group member, andei ∈R Γ is a random prime number that is known to both the
group member and group manager.4

In our scheme,ei is treated as tracing trapdoor, and kept secret by the group mem-
ber and group manager. When an open authority revealsAi for a signature, the group
manager sends the correspondingei to the trace agents in order to trace all signatures
associated withei.

xi is treated as self-tracing trapdoor, which is used by a groupmember to claim his
signatures. Sincexi is the secret of group member, only group member himself have
the ability to claim his signatures.

4.4 Sign Protocol

In order to sign a messagem, a group member does the following:

– Derive two generatorsi andj of QRn by hashing the LCID of this signature.

i = (H1(LCID))2 (mod n), j = (H2(LCID))2 (mod n).

In the random oracle model, with the hash functions modeled by random oracles,
each distinct LCID results ini andj being random generators ofQRn with over-
whelming probability.

– Generate a random valuew ∈R {0, 1}2lp and compute:

T1 = Aiy
w (mod n), T2 = gw (mod n), T3 = iei (mod n), T4 = jxi (mod n)

– Randomly (uniformly) chooser1 ∈R ±{0, 1}ǫ(γ2+k), r2 ∈R ±{0, 1}ǫ(λ2+k), and
r3 ∈R ±{0, 1}ǫ(λ1+2lp+k+1), and compute
• d1 = T r1

1 /(ar2yr3) (mod n), d2 = T r1

2 /gr3 (mod n), d3 = ir1 (mod n),
d4 = jr2 (mod n).

• c = H3(g||i||j||y||a0||a||T1||T2||T3||d1||d2||d3||d4||m);
• s1 = r1 − c(ei − 2γ1), s2 = r2 − c(xi − 2λ1), s3 = r3 − ceiw (all in Zn).

– Output the signature tuple(LCID, c, s1, s2, s3, T1, T2, T3, T4).

4.5 Verify Protocol

To verify a signature(LCID, c, s1, s2, s3, T1, T2, T3, T4), a verifier does the following.

– Compute the same generatorsi andj, and then

c′ = H3(g||i||j||a0||a||T1||T2||T3||T4||a
c
0T

s1−c2γ1

1 /(as2−c2λ1

ys3)||

T s1−c2γ1

2 /gs3 ||is1−c2γ1

T c
3 ||j

s2−c2λ1

T c
4 ||m)

– Accept the signature if and only ifc = c′ and s1 ∈ ±{0, 1}ǫ(γ2+k)+1, s2 ∈
±{0, 1}ǫ(λ2+k)+1, s3 ∈ ±{0, 1}ǫ(λ1+2lp+k+1)+1.

4 Kiayiaset al.have showed the range ofxi, ei can be much smaller without compromising the
scheme’s security [14]. For simplicity, we still follow thedefinition in ACJT scheme.



4.6 Open and Reveal Protocol

For a valid signature, the open authority opens a signature to find its originator by
ElGamal decryption:

Ai = T1/T x
2 (mod n).

For the non-framing property, the open authority must also issue a proof that it correctly
revealed the group member, which can be done identically to the method used by the
ACJT group signatures.

The opened certificateAi is submitted to the group manager, and the group manager
reveals the corresponding tracing trapdoorei to the trace agents.

4.7 Trace Protocol

To trace a group member, trace agents useei to reveal all the signatures by a group
member by checking whether

iei =? T3 (mod n).

To claim a signature, a group member proves its knowledge of discrete logarithm ofT4

with basej through Protocol 1.

5 Security Properties

Our scheme uses the same certificate as in the ACJT group signature. We have changed
their Sign and Verify protocols. The security properties, such as, forgery-resistance,
anonymity, non-framing, are unaffected by these changes. In this section, we only dis-
cuss the security properties affected by our change. Readers may refer to the original
paper for other security arguments — the following theorem is representative, and fur-
ther discussion is available in the full version of this paper.

Theorem 1 (Coalition-resistance).Under the strong RSA assumption, a group certifi-
cate [Ai = (axia0)

1/ei (mod n), ei] with x ∈ Λ and ei ∈ Γ can be generated only
by the group manager provided that the numberK of certificates the group manager
issues is polynomially bounded.

Now, we address the security of Sign and Verify protocol, which is described as the
following theorem.

Theorem 2. Under the strong RSA assumption, and the decisional Diffie-Hellman as-
sumption, the interactive protocol underlying the group signature scheme is a statistical
zero-knowledge (honest-verifier) proof of knowledge of a membership certificate and a
corresponding membership secret key.

Proof. The proof for correctness is straightforward. A proof for the zero-knowledge
property (simulator) following the same method in the KTY scheme (Lemma 20) ap-
pears in the full version of this paper. We only address the existence of a knowledge
extractor, which is able to recover the group certificate when it has found two accept-
ing tuples under the same commitment and different challenges from a verifier. Let
(T1, T2, T3, d1, d2, d3, c, s1, s2, s3) and(T1, T2, T3, d1, d2, d3, c

′, s′1, s
′

2, s
′

3) be such tu-
ples.



Sinced4 ≡ js2−c2λ1

T c
4 ≡ j′s2−c′2λ1

T c′

4 (mod n), we have

j(s′

2
−s2)+(c−c′)2λ1

≡ T c−c′

4 (mod n).

Under the strong RSA assumption,c−c′ has to divide(s′2−s2)+(c−c′)2λ1 . Therefore
we haveτ1 = (s′2 − s2)/(c − c′) + 2λ1 .

Sinced3 ≡ is1−c2γ1

T c
3 ≡ is

′

1
−c′2γ1

T c′

3 (mod n), we have

i(s
′

1
−s1)+(c−c′)2γ1

≡ T c−c′

3 (mod n).

Likewise, under the strong RSA assumption,c − c′ has to divide(s′1 − s1). We obtain
τ2 = (s′1 − s1)/(c − c′) + 2γ1 .

Sinced2 ≡ T s1−c2γ1

2 /gs3 ≡ T
s′

1
−c′2γ1

2 /gs′

3 (mod n), we have

T
(s′

1
−s1)+(c−c′)2γ1

2 ≡ gs′

3
−s3 (mod n).

Similarly, we haveτ3 = (s′3 − s3)/((s′1 − s1) + (c − c′)2γ1).

Sinced1 ≡ ac
0T

s1−c2γ1

1 /(as2−c2λ1

ys3) ≡ ac′

0 T s1−c′2γ1

1 /(as2−c′2λ1

ys3) (mod n),
We have

as′

2
−s2+(c−c′)2λ1

ac−c′

0 ≡ T
s′

1
−s1+(c−c′)2γ1

1 /ys′

3
−s3 (mod n).

We further obtain

a(s′

2
−s2)/(c−c′)+2λ

a0 ≡ (T1/y(s′

3
−s3)/((s′

1
−s1)+(c−c′)2γ1 ))(s

′

1
−s1)/(c−c′)+2γ1

( mod n).

Finally, letAi = T1/yτ3 ( mod n), and then we obtain a valid certificate(Ai, τ2, τ1)
such thatAτ2

i = aτ1a0 (mod n), andτ1, τ2 lie in the valid range due to the length re-
striction ons1, s2, s3 andc. Therefore we have demonstrated the existence of a knowl-
edge extractor that can fully recover a valid group certificate. ⊓⊔

Unlinkability follows the same argument in the ACJT group signature forT1, T2.
Since we define a newT3, T4 in our traceable signature, we need to show this change
still keeps the unlinkability property (for different generatorsi andi′). Similar to the
case in the ACJT group signature, the problem of linking two tuples(i, T3), (i′, T ′

3),
is equivalent to deciding the equality of the discrete logarithms of T3, T

′

3 with base
i, i′ respectively. This is assumed to be infeasible under the decisional Diffie-Hellman
assumption overQRn. (j, T4), (j′, T ′

4) also follows the same argument. Therefore, we
have the following result.

Theorem 3 (Unlinkability). Under the decisional Diffie-Hellman assumption overQRn

and with H1 and H2 as random oracles, there exists no probabilistic polynomial-
time algorithm that can make the linkability decision for any two arbitrary tuples
(i, T3), (i

′, T ′

3), or (j, T4), (j
′, T ′

4) with non-negligible probability.



6 Conclusion

We have presented a traceable signature scheme which is an enhancement of the ACJT
group signature scheme [1] that supports variable anonymity. Our scheme is a more gen-
eral solution to anonymous authentication, due to its support of traceability and variable
anonymity. Traceability provides an efficient and fair mechanism to reveal and revoke
corrupted group members, which is very important to a large,realistic anonymous au-
thentication system. Variable anonymity can be adjusted toprovide a wide range of link-
ability properties, from completely unlinkable signatures, to signatures linkable within
a fixed time period, to completely linkable signatures (giving what is essentially a fixed
pseudonym system). In practice, the amount of linkability would be determined by a
risk analysis of the application, balancing the goal of protecting a user’s privacy against
a provider’s goal of detecting inappropriate uses of keys. As our scheme supports the
full range of linkability options, it provides the best available flexibility to users as well
as providers. Finally, we have proved that our new signaturescheme is secure under the
strong RSA assumption and the Decisional Diffie-Hellman assumption overQRn.
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