
Searching in an Unknown Environment:

An Optimal Randomized Algorithm for the Cow-Path Problem

Ming-Yang Kao∗ John H. Reif†

Dept. of Computer Science
Duke University
Durham, NC 27706

Stephen R. Tate‡

Dept. of Computer Science
University of North Texas
Denton, TX 76208

∗Supported in part by NSF Grant CCR-9101385.
†Supported in part by DARPA/ISTO Contracts N00014-88-K-0458 and N00014-91-J-1985, NASA subcontract

550-63 of prime contract NAS5-30428, and US-Israel Binational NSF Grant 88-00282/2, and US-Israel Binational
NSF Grant 88-00282/2.

‡Supported in part by NSF Grant CCR-9409945.

1

Running Head: Searching in an Unknown Environment

Contact Author: Steve Tate
Department of Computer Science
University of North Texas
P.O. Box 13886
Denton, TX 76208–6886

2

Abstract

Searching for a goal is a central and extensively studied problem in computer science. In
classical searching problems, the cost of a search function is simply the number of queries made
to an oracle that knows the position of the goal. In many robotics problems, as well as in
problems from other areas, we want to charge a cost proportional to the distance between
queries (e.g., the time required to travel between two query points). With this cost function in
mind, the abstract problem known as the w-lane cow-path problem was designed.
There are known optimal deterministic algorithms for the cow-path problem, and we give

the first randomized algorithm in this paper. We show that our algorithm is optimal for two
paths (w = 2), and give evidence that it is optimal for larger values of w. Subsequent to the
preliminary of version of this paper, Kao, Ma, Sipser, and Yin [10] have shown that our algorithm
is indeed optimal for all w ≥ 2. Our randomized algorithm gives expected performance that is
almost twice as good as is possible with a deterministic algorithm. For the performance of our
algorithm, we also derive the asymptotic growth with respect to w — despite similar complexity
results for related problems, it appears that this growth has never been analyzed.

3

1 Introduction

The problem of searching is central to almost all areas of computer science. Variants of searching

problems come up often in the study of data structures, database applications, computational

geometry, and artificial intelligence. Due to the importance of searching problems, many variants

of simple searching have been studied, including searching in unknown environments [2, 7], and

searching in the presence of errors [1, 14].

In this paper, we examine the problem of searching in an unknown environment; specifically,

we study a problem known as the w-lane cow-path problem. The name comes from the following

scenario: Consider a cow, Bessie, standing at a crossroads (referred to as the origin) with w paths

leading off into unknown territory. On one of the paths there is a grazing field (the goal) at distance

n from the intersection, and all of the other paths go on forever; unfortunately, Bessie’s eyesight is

not very good — she won’t know that she has found the field until she is standing in it (i.e., she

can’t see down the road). Clearly Bessie must walk at least distance n to get to the field; if she

knows which path to take, she will walk exactly distance n. When Bessie has no prior knowledge

of which path the field is on, or of the value n, we would like to know how she can find the field

while traveling the least distance possible.

This problem plays an important role in many areas of computer science. The most obvious

application is in the area of robotics — when a robot is put in an unknown environment, this

exact problem comes up repeatedly. For instance, when exploring in an unknown two dimensional

environment (e.g., a mobile robot on the floor of a cluttered warehouse), each time the robot runs

into an obstacle, it should find the closest corner of the obstacle to go around (see, for example, [4]).

This robotics problem is just a case of the w-lane cow-path problem with w = 2. In addition, this

algorithm can be used in the very general context of creating hybrid algorithms. In this case, the

different paths represent different base algorithms, and execution alternates between different base

algorithms according to search distances given by the cow-path problem. A previous algorithm

for this problem was applied in this manner by Fiat, Rabani, and Ravid in presenting the first

competitive algorithm for the online k-server problem [8]. A recent paper by Kao, Ma, Sipser, and

Yin [10] further explores the construction of hybrid algorithms from a set of known algorithms,

and is based in a large part on a preliminary version of this paper [11]. Furthermore, the cow-path

problem comes up in artificial intelligence applications where a goal is sought in a largely unknown

4

search space (for an overview of searching in artificial intelligence, see [12]). These examples

demonstrate the breadth of applications and fundamental nature of the cow-path problem.

The cow-path problem has much in common with the study of online algorithms, and we use the

notion of competitive analysis of online algorithms in order to measure the efficiency of algorithms

for the cow-path problem. The competitive ratio for an algorithm solving the cow-path problem is

the worst-case ratio of the expected distance traveled by the algorithm to the shortest-path distance

from origin to goal. In particular, if the worst-case expected distance traveled by a randomized

algorithm is at most cn+ d, where n is the distance to the goal and d is a fixed constant, then the

competitive ratio of this algorithm is c.

In previous work, Baeza-Yates, Culberson, and Rawlins gave an optimal deterministic algorithm

for the cow-path problem [2]. As a function of w, the competitive ratio for their algorithm is

asymptotically equal to 1 + 2ew, and for w = 2 the ratio is exactly 9. They also prove that their

algorithm gives optimal deterministic performance. In other previous work, Chrobak and Larmore

have studied a related problem called “Metrical Service Systems”, in which requests (which are

subsets of points in a metric space) must be served by a single server moving in that metric

space [5]. While this problem has some substantial differences from the cow-path problem, there

are several similarities, one of which is striking — Chrobak and Larmore’s deterministic algorithm

for MSS2 (where requests are pairs of points) has competitive ratio 9, just like the deterministic

2-path cow-path problem, and the performance of their randomized algorithm for MSS2 is exactly

the same as the performance of the randomized cow-path algorithm that we present in this paper

(approximately 4.5911). Chrobak and Larmore leave open the question of whether their algorithms

are optimal for MSS2. In one last example of previous work, the cow-path problem has also been

studied in the context of game theory by Gal [9]. Gal in fact gives many of the results of the

Baeza-Yates, Culberson, and Rawlins paper [2] and of our paper. A main difference between our

work and that of Gal is in the focus — our results are self-contained, and use results and notation

familiar to the Theoretical Computer Science community. In addition, the lower bound proof of

this paper presents a new, general purpose lower bound technique that should be useful in proving

lower bounds for many other problems. In fact, it was this technique that allowed Kao, Ma, Sipser,

and Yin [10] to extend our optimality proofs to a more powerful result, enhancing both this paper

and the work of Gal. Finally, we also analyze the growth rate of the competitive ratio of our

5

algorithm, filling in an important gap in both Gal’s work, and the original conference version of

this paper [11].

In this paper, we give the first randomized algorithm for the cow-path problem, and we give a

lower bound proof to show that our algorithm is optimal for w = 2. The ratio achieved is a rather

complicated value — it is exactly given in terms of the fixed point of a certain equation — and

is asymptotically equal to κw + o(w), where κ is a constant value approximately equal to 3.088.

For the important case of w = 2, the competitive ratio of our algorithm is approximately 4.5911,

which is almost twice as good as the best that can be done deterministically. Subsequent to the

publication of the conference version of this paper [11], in which we conjectured that our algorithm

is also optimal for w ≥ 3, Kao, Ma, Sipser, and Yin [10] have given a rather intricate proof showing
that our algorithm is in fact optimal for all w ≥ 2.
A similar problem, known as layered graph traversal, has been studied by Papadimitriou and

Yannakakis [13] and Fiat, Foster, Karloff, Rabani, Ravid, and Vishwanathan [7]. Layered graph

traversal is similar to the cow-path problem, but allows shortcuts between paths without going

through the origin, and when exploring one path, information about the other paths may be ob-

tained at no cost. If only deterministic algorithms are considered, then the cow-path problem can

be considered a special case of layered graph traversal; however, when considering randomized algo-

rithms, the problems are fundamentally different. Fiat et al. showed that in layered graph traversal,

an exponential (in the number of paths) improvement could be obtained using randomization [7].

2 Definitions

Let A be a deterministic algorithm for the cow-path problem. For any goal position g at distance
dist(g) from the origin, algorithm A travels a fixed distance, which we denote cost(A, g), to find
the goal. We say that algorithm A has competitive ratio c if, for all goal positions g,

cost(A, g) ≤ c dist(g) + d,

where c and d are constants that are independent of the goal position g.

If algorithm R is a randomized algorithm, then the distance traveled to find a particular goal
position is no longer fixed. Instead, cost(R, g) is a random variable, and we define the competitive
ratio by the expected value of this random variable. In other words, algorithm R has competitive

6

σ ← A random permutation of {0, 1, 2, · · · , w − 1};
ε← A random real uniformly chosen from [0, 1);
d← rε;
p← 0;
repeat

Explore path σ(p) up to distance d;
if goal not found then return to origin;
d← d · r;
p← (p + 1) mod w;

until goal found;

Figure 1: Algorithm SmartCow, for parameter r > 1

ratio c if, for all goal positions g,

E[cost(R, g)] ≤ c dist(g) + d, (1)

where c and d are constants as before.

In particular, if an algorithm for the cow-path problem has competitive ratio c, then for any

goal position that is distance n from the origin, the expected distance that the algorithm has to

travel in order to find the goal is at most cn plus some small constant.

3 Algorithm

In this section we describe SmartCow, our randomized algorithm for the cow-path problem. Smart-

Cow is a randomized geometric sweep algorithm with geometric ratio r > 1, a constant that is fixed

for the duration of the algorithm. For ease of reference, assume that the w paths are labeled with

integers 0, 1, · · · , w − 1. The general outline of SmartCow can be found in Figure 1; the analysis of
the competitive ratio will be done in terms of the constant r, and in Section 5 we will see how to

find the best possible r.

It should be noted that the use of randomization is very limited; randomization is used only

at the very beginning of the search, in order to pick a random permutation and a random “initial

search distance”. The algorithm never needs access to a random number generator once the search

7

has begun. We define the function

R(r,w) = 1 +
2

w
· 1 + r + r

2 + · · ·+ rw−1
ln r

, (2)

which we will next prove to be the competitive ratio of algorithm SmartCow.

Theorem 3.1 For any fixed r > 1, Algorithm SmartCow has competitive ratio R(r,w).

Proof : For a given goal position, let n denote the distance from the origin to the goal, and let q

be the path on which the goal lies. If n < 1 we can handle this as a special case in the analysis

— the distance traveled is clearly at most (rw − 1)/(r − 1), which is independent of n, and so can
be entirely covered by the constant term d in equation (1). Therefore, for the remainder of this

proof we assume that n ≥ 1. Furthermore, let k be an integer, and let δ be a real value satisfying
0 ≤ δ < 1, where k and δ are such that n = rk+δ.
Notice from Figure 1 that SmartCow proceeds in stages, where at stage i ∈ {0, 1, 2, · · ·} the

algorithm sweeps distance ri+ε on path σ(i mod w). Let m be the first stage where SmartCow

sweeps distance at least rk on the same path as the goal. More formally, m is the least integer such

that m ≥ k and σ(m mod w) = q. The value m always satisfies k ≤ m ≤ k + w − 1.
Case 1: m ≥ k + 1. In this case, the sweep distance is at least rk+1 at stage m, so SmartCow
always finds the goal on stage m. If D is the random variable denoting the distance traveled by

our algorithm, then it is easy to see that when m = c ≥ k + 1

D = 2
c−1∑
i=0

ri+ε + n =
2rε(rc − 1)
r − 1 + n,

and the expected value is easily calculated as

E[D|m = c] = 2(r
c − 1)
r − 1 E[r

ε|m = c] + n.

Calculating E[rε|m = c] is relatively straightforward. The density function for rε is calculated from
the fact that ε is uniformly distributed, giving

E[rε|m = c] = E[rε] =
∫ r
1
x · 1
x ln r

dx =
r − 1
ln r
.

Thus, the resulting expected distance traveled in this case is

E[D|m = c] = 2(r
c − 1)
ln r

+ n.

8

Case 2: m = k. In this case, SmartCow may or may not find the goal on sweep m, depending on

whether or not ε ≥ δ. Let F denote the event that SmartCow finds the goal at stage m. Then

E[D|m = k] = Prob(F)E

[
2
k−1∑
i=0

ri+ε + n

∣∣∣∣∣F
]
+ Prob(F̄)E

[
2
k+w−1∑
i=0

ri+ε + n

∣∣∣∣∣ F̄
]

= Prob(F)
2(rk − 1)
r − 1 E[r

ε|F] + Prob(F̄)2(r
k+w − 1)
r − 1 E[rε|F̄] + n

=
2

r − 1
[
Prob(F)(rk − 1)E[rε|F] + Prob(F̄)(rk+w − 1)E[rε|F̄]

]
+ n.

In this case, E[rε|F] and E[rε|F̄] can be found as follows:

E[rε|F] =
∫ r
rδ
x · 1

Prob(F)x ln r
dx =

r − rδ
Prob(F) ln r

;

E[rε|F̄] =
∫ rδ
1
x · 1

Prob(F̄)x ln r
dx =

rδ − 1
Prob(F̄) ln r

.

Using these values,

E[D|m = k] = 2

(r − 1) ln r
[
(r − rδ)(rk − 1) + (rδ − 1)(rk+w − 1)

]
+ n.

The competitive ratio of SmartCow depends on the overall, or unconditional, expected distance

E[D]. This is calculated by combining the above results, using the formula

E[D] =
k+w−1∑
i=k

Prob(m = i)E[D|m = i].

At the beginning of the search, the algorithm chooses a random permutation σ, so Prob(m = i) = 1
w

for every i such that k ≤ i ≤ k + w − 1.
Therefore, the above equation can be expanded to

E[D] =
2

w(r − 1) ln r
[
(r − rδ)(rk − 1) + (rδ − 1)(rk+w − 1)

]
+
n

w
+
k+w−1∑
i=k+1

[
2(rm − 1)
w ln r

+
n

w

]

=
2

w(r − 1) ln r

(r − rδ)(rk − 1) + (rδ − 1)(rk+w − 1) + (r − 1) k+w−1∑

i=k+1

(rm − 1)

+ n

=
2

w(r − 1) ln r
[
rk+δ(rw − 1)− w(r − 1)

]
+ n

≤
[
2(rw − 1)
w(r − 1) ln r + 1

]
n.

9

The competitive ratio is simply the expected distance traveled (E[D]) divided by n:

1 +
2(rw − 1)
w(r − 1) ln r = 1 +

2

w
· 1 + r + r

2 + · · ·+ rw−1
ln r

= R(r,w),

which is exactly the value claimed in the theorem.

From the preceding theorem, it is difficult to see how the performance of algorithm SmartCow

compares to that of the optimal deterministic algorithm given by Baeza-Yates, Culberson, and

Rawlins [2]. For example, when w = 2 their algorithm has a competitive ratio of 9, while Theo-

rem 3.1 states that SmartCow has competitive ratio 1+ 1+rln r . In section 5 we will see how to choose

r so that the competitive ratio of SmartCow is approximately 4.5911, or almost twice as good as

the deterministic algorithm. In the next section we will see that this is in fact the best ratio that

can be achieved by any randomized algorithm.

4 Lower Bound

To prove our lower bound for randomized algorithms, we appeal to Yao’s corollary of the famous von

Neumann minimax principle [16]. In particular, we will define a probability distribution for inputs

to the cow-path problem, and then lower bound the performance of any deterministic algorithm on

this input distribution. Yao’s result states that this lower bound must also be a lower bound for

the expected performance of any randomized algorithm on its worst-case input.

We actually use a family of probability distribution functions, parameterized by ε > 0. We will

denote a particular distribution function by fε,w, and we will use Opt(ε, w) to denote the optimal

competitive ratio of any deterministic algorithm with input distribution fε,w. Our goal will be to

show that lim
ε→0Opt(ε, w) exists, and give a value for this limit. The following lemma shows that this

limit is a lower bound for the original problem.

Lemma 4.1 Let OptR(w) denote the optimal competitive ratio for any randomized cow-path algo-

rithm on inputs with w paths. If ` = lim
ε→0Opt(ε, w), then OptR(w) ≥ `.

Proof : For the sake of contradiction, assume that there is a randomized cow-path algorithm that

achieves competitive ratio ρ < `. Let δ = `−ρ
2 . Now by the formal definition of the limit, there

exists an ε0 such that for all ε < ε0, |Opt(ε, w) − `| ≤ δ. In other words, for any ε < ε0,

Opt(ε, w) ≥ `− δ = 2`− (`− ρ)
2

=
`+ ρ

2
> ρ.

10

But, by Yao’s lemma, this implies that OptR(w) > ρ, a contradiction with the original assumption

that there exists a randomized algorithm with competitive ratio ρ.

Now we define the density function fε,w. To specify the position of the goal, we need to specify

both the path on which the goal lies and the distance down that path to the goal. For all values of

ε, the path is chosen uniformly from all possible paths. Thus, we will use fε,w to denote only the

distance down the chosen path to the goal. The density function we use is

fε,w(x) =

{
εx−(1+ε) if x ≥ 1;
0 otherwise.

Any deterministic algorithm can be defined by a sequence (s0, p0), (s1, p1), · · · , (sk, pk), · · ·, where
sk is the distance of the kth sweep, and pk is the path on which the kth sweep is taken. In fact, since

the goal is placed on a uniformly chosen ray, we can assume that the sequence of path explorations

goes in a fixed cyclic order. Without loss of generality, we assume that pk = (k mod w), and then

the algorithm is completely specified by the sequence s0, s1, · · · , sk, · · ·. Since the distance from the
origin to the goal is at least one, we can safely assume that s0 ≥ 1. In fact, by adding an extra
search probe in the beginning, we can assume that s0 = 1; the cost of this extra probe is just an

additive constant, which does not affect the competitive ratio. Using this notation, we can prove

the following lemma.

Lemma 4.2 Let algorithm A be a deterministic algorithm defined by the sequence s0, s1, · · · , sk, · · ·.
For input distribution fε,w, the expected competitive ratio of A is

1 +
2ε

w(1 + ε)

w−2∑
i=0

(w − 1− i)si +
∞∑
i=0

s
−(1+ε)
i

w−1∑
j=0

si+j

 .

Proof : The position of the goal can be specified by defining two random variables. The first, P ,

is uniformly distributed over {0, 1, · · · , w − 1} and determines the path that the goal lies on. The
second random variable, D, is distributed according to fε,w, defined above, and represents the

distance from the origin to the goal.

We will also define some conditions, Ci for i = 0, 1, 2, · · ·, where Ci is true exactly when algorithm
A finds the goal on sweep i. More formally,

Ci is true if and only if

{
1 ≤ D ≤ si and P = i when 0 ≤ i < w;
si−w < D ≤ si and P ≡ i(modw) when i ≥ w.

11

Notice that the conditions Ci partition the space of all possible goal positions, so if we let pi =

Prob(Ci), then it should be clear that
∑∞
i=0 pi = 1. Furthermore, if R is a random variable denoting

the competitive ratio achieved by algorithm A, then

E[R] =
∞∑
i=0

piE[R|Ci]. (3)

In computing the expected values E[R|Ci] there are three cases: i = 0, 1 ≤ i < w, and i ≥ w. We
present the analysis for i ≥ w below; the remaining cases are similar.
Computing E[R|Ci], we know that Ci holds, so the distance traveled by the algorithm is

i−1∑
j=0

(2sj) +D.

Dividing by D, we see that the expected competitive ratio under this condition is given by

E[R|Ci] = E[
i−1∑
j=0

2sj
D
+ 1|Ci] = E[1

D
|Ci]

i−1∑
j=0

(2sj) + 1. (4)

To calculate E[1D |Ci], we simply refer back to the distribution for D, scale this by pi since we
want the conditional expectation, and integrate to find the expected value. In other words,

E[
1

D
|Ci] =

∫ si
si−w

1

x

ε

wpi
x−(1+ε)dx =

ε

wpi(1 + ε)

(
s
−(1+ε)
i−w − s−(1+ε)i

)
.

Combining this with equation (4) gives the conditional expected competitive ratio.

Summarizing all cases for the conditional expectation,

E[R|Ci] =

1 if i = 0;

2ε

wpi(1 + ε)

(
1− s−(1+ε)i

) i−1∑
j=0

sj + 1 if 1 ≤ i < w;

2ε

wpi(1 + ε)

(
s
−(1+ε)
i−w − s−(1+ε)i

) i−1∑
j=0

sj + 1 if i ≥ w.

Combining these results with equation (3) gives (after some algebraic manipulation)

E[R] = 1 +
2ε

w(1 + ε)

w−2∑
i=0

(w − 1− i)si +
∞∑
i=0

s
−(1+ε)
i

w−1∑
j=0

si+j

 ,

which is exactly what we are proving.

Using the two preceding lemmas, we can prove that the algorithm of the previous section is

optimal for w = 2.

12

Theorem 4.1 For w = 2, the optimal competitive ratio is given by

min
r>1

{
1 +
1 + r

ln r

}
.

Since this ratio is achievable by the algorithm of the previous section, the algorithm SmartCow is

optimal.

Proof : Assume that the values s0, s1, · · · , sk, · · · define the optimal deterministic algorithm for a
fixed ε, and let Opt(ε, 2) denote the competitive ratio given in Lemma 4.2. Rewrite this formula in

cleaner form for w = 2:

Opt(ε, 2) = 1 +
ε

1 + ε

(
s0 +

∞∑
i=0

si + si+1

s1+εi

)
.

For a fixed ε, to lower bound this equation, we only need to find a lower bound for

R(ε) =
∞∑
i=0

si + si+1

s1+εi
=
s0 + s1

s1+ε0
+
∞∑
i=1

si + si+1

s1+εi
= 1 + s1 +

∞∑
i=1

si + si+1

s1+εi

(recall that s0 = 1 is fixed).

By setting ti =
si+1
s1
, we obtain a new sequence with t0 = 1. The above sum can be written in

terms of this new sequence as

1 + s1 + s
−ε
1

∞∑
i=0

ti + ti+1

t1+εi
.

But this is easily lower bounded by

R(ε) = 1 + s1 + s
−ε
1

∞∑
i=0

ti + ti+1

t1+εi
≥ 1 + s1 + s−ε1 R(ε).

In other words,

R(ε) ≥ 1 + s1
1− s−ε1

,

so

Opt(ε, 2) ≥ 1 + ε

1 + ε

(
1 +

1 + s1

1− s−ε1

)
.

By setting si = s
i
1 and recalling Lemma 4.2, we see that the geometric sweep algorithm has

exactly the competitive ratio stated as a lower bound above. In other words, the above is not just

a lower bound, it is in fact the exact optimal value when minimized over s1. So for fixed ε,

Opt(ε, 2) = min
r>1

{
1 +

ε

1 + ε

(
1 +

1 + r

1− r−ε
)}
.

13

By Lemma 4.1, we know that OptR(2) ≥ limε→0Opt(ε, 2), so we can bound OptR(2) by

OptR(2) ≥ lim
ε→0minr>1

{
1 +

ε

1 + ε

(
1 +

1 + r

1− r−ε
)}

= min
r>1
lim
ε→0

{
1 +

ε

1 + ε

(
1 +

1 + r

1− r−ε
)}

= min
r>1

{
1 +
1 + r

ln r

}
.

The last line above is exactly the bound claimed in the theorem statement.

Subsequent to the conference publication of this paper, Kao, Ma, Sipser, and Yin have used

similar reasoning to shown that, in fact, SmartCow is optimal for all w ≥ 2 [10]. Their proof is
closely related to the one just presented, using small variants of Lemmas 4.1 and 4.2 — an important

contribution of their paper is a very intricate and involved proof that replaces our Theorem 4.1,

and works for all w ≥ 2.

5 Minimizing the Competitive Ratio

Recall from Theorem 3.1 that algorithm SmartCow has competitive ratio

R(r,w) = 1 +
2

w
· 1 + r + r

2 + · · ·+ rw−1
ln r

,

where r is a fixed algorithm parameter. In other words, for a fixed w SmartCow is really a class of

algorithms, indexed by the parameter r. In order to get the best performance possible, we would

like to pick a value of r that minimizes R(r,w).

Theorem 5.1 The unique solution of the equation

ln r =
1 + r + r2 + · · ·+ rw−1

r + 2r2 + 3r3 + · · ·+ (w − 1)rw−1 (5)

for r > 1, denoted by r∗w, gives the minimum value for R(r,w).

Proof : To minimize R(r,w) for a fixed w, we only need to minimize the part that depends on r.

Call this function fw(r), where

fw(r) =
1 + r + r2 + · · ·+ rw−1

ln r
.

14

This function is continuous, and fw(r) goes to positive infinity when either end of the interval

(1,∞) is approached. Therefore, any minimum of the function on this interval must be a local
minimum, and we can find this by taking a derivative:

f ′w(r) =
(r + 2r2 + · · ·+ (w − 1)rw−1) ln r − (1 + r + · · · + rw−1)

(ln r)2
.

The denominator is non-zero and finite for all r ∈ (1,∞), and the numerator is zero exactly when
equation (5) is true. In other words, the minimizing r must satisfy equation (5) — by showing that

there is only one such r, we will have proved the theorem.

We need to show that equation (5) has exactly one solution for r > 1. To see this, first note

that the function ln r is monotonically increasing for r > 1. Next, we will show that the right hand

side of equation (5) is monotonically decreasing, so it follows that equation (5) can have at most

one solution. To see this, consider the right hand side of equation (5):

gw(r) =
1 + r + r2 + · · ·+ rw−1

r + 2r2 + 3r3 + · · ·+ (w − 1)rw−1 . (6)

Taking the derivative with respect to r gives

g′w(r) =
r(1 + 2r + · · ·+ (w − 1)rw−2)2 − (1 + r + · · · + rw−1)(1 + 4r + · · ·+ (w − 1)2rw−2)

(r + 2r2 + · · · + (w − 1)rw−1)2 .

The denominator of g′w(r) is clearly positive and non-zero for r > 1, and the numerator can be

written as a polynomial in r. After some algebraic manipulation, it is discovered that the numerator

of g′w(r) can be written as
∑2w−2
i=0 ckr

k, where the coefficients ck are

ck =

{
− (k+1)(k+2)(k+3)6 for 0 ≤ k ≤ w − 2;
− (2w−k−3)(2w−k−2)(2w−k−1)6 for w − 1 ≤ k ≤ 2w − 2.

Clearly, all these coefficients are negative, so for r > 1 the numerator of g′w(r), and hence g′w(r)

itself, is negative. In other words, we have shown that gw(r) is monotonically decreasing for r > 1.

Now that we have shown that equation (5) has at most one solution, we will show that it has

at least one solution. To see this, consider the function

ln r − 1 + r + r2 + · · ·+ rw−1
r + 2r2 + 3r3 + · · ·+ (w − 1)rw−1 .

For any fixed w, this function is clearly negative for r = 1, and positive in the limit as r → ∞.
Furthermore, since the function is continuous, it must have a root in the interval (1,∞). Thus we
have proved that equation (5) has exactly one solution for r > 1.

15

Competitive Optimal
w r∗w Ratio of Deterministic

SmartCow Ratio

2 3.59112 4.59112 9

3 2.01092 7.73232 14.5

4 1.62193 10.84181 19.96296

5 1.44827 13.94159 25.41406

6 1.35020 17.03709 30.85984

7 1.28726 20.13033 36.30277

Table 1: Approximate values for small w.

The value r∗w can be found for any given w from equation (5) by using standard numerical

techniques, and using this value we can construct the best algorithm from the family of algorithms

described by SmartCow. Approximate values for small values of w are given in Table 1, with the

optimal deterministic ratio shown for reference.

Due to the results of Section 4 and of Kao, Ma, Sipser, and Yin [10], the competitive ratios

shown in Table 1 are in fact optimal for randomized algorithms.

6 Growth With The Number Of Paths

In this section, we consider the growth of the competitive ratio of algorithm SmartCow as the

number of paths grows. Recall that R(r,w) was defined in equation (2) and shown to be the

competitive ratio of algorithm SmartCow, and that in Theorem 5.1 we showed that for each w there

is a unique r > 1 (called r∗w) that gives the best performance for algorithm SmartCow. We will use

OR(w) = R(r∗w, w) to denote the optimum performance of SmartCow for w values. Furthermore,

we define a special constant κ to be the value

κ = min
d>0

[
2
ed − 1
d2

]
≈ 3.088.

We will show that the competitive ratio of algorithm SmartCow is κw + o(w).

In our proof, we will make use of the following easily verified inequalities. For all x > 0,

e1−1/2x <
(
1 +
1

x

)x
< e, (7)

16

and

ln(1 + x) ≥ x− x
2

2
. (8)

We are now prepared to prove an upper bound on the competitive ratio of algorithm SmartCow.

Lemma 6.1 OR(w) ≤ κw +Θ(1).

Proof : Fix some constant c > 0, and define the sequence of values rw = 1+
c
w . From inequality (7)

we know that

e(1−
c
2w
)c < (rw)

w < ec.

Now clearly OR(w) ≤ R(rw, w), so for w > c
2 we can derive

OR(w) ≤ 1 + 2
ec − 1

c2

w (1− c
2w)

= 1 + 2
ec − 1
c2
w

(
1 +

c

2w − c
)

= 2
ec − 1
c2
w +Θ(1).

This is true for any arbitrarily chosen c, so in particular is true for the c that minimizes the constant

of the linear term. Therefore,

OR(w) ≤ min
c>0

[
2
ec − 1
c2

]
w +Θ(1) = κw +Θ(1),

as claimed in the lemma statement.

Lemma 6.1 gives an upper bound on the growth of the competitive ratio with the number of

paths, and we now show a similar lower bound; however, first we need a preliminary result bounding

r∗w.

Lemma 6.2 For any w ≥ 5, r∗w ≤ 1 + 5
w .

Proof : From Theorem 5.1 we know that for any w the optimizing r∗w satisfies equation (5), and

that the right hand side of this equation, named gw(r) in equation (6), is monotonically decreasing,

while the left hand side is monotonically increasing. Therefore, if we can show that for all w ≥ 5,

ln

(
1 +
5

w

)
≥ gw

(
1 +
5

w

)
,

then we know that for all w ≥ 5, r∗w ≤ 1 + 5
w .

17

To prove this, first notice that since gw(r) is monotonically decreasing for all r ≥ 1, we can
bound

gw

(
1 +
5

w

)
≤ gw(1) = 2

w − 1 .

Next, from inequality (8) we can derive, for w ≥ 5,

ln

(
1 +
5

w

)
≥ 5
w

(
1− 5
2w

)
=

5

w − 1
(
1− 1
w

)(
1− 5
2w

)
≥ 5

w − 1 ·
4

5
· 1
2
=

2

w − 1 .

Combining these two bounds, we get

ln

(
1 +
5

w

)
≥ 2

w − 1 ≥ gw
(
1 +
5

w

)
,

so from the discussion at the beginning of the proof it follows that

r∗w ≤ 1 +
5

w
,

as claimed.

Lemma 6.3 OR(w) ≥ κw − o(w).

Proof : First, define εw = r
∗
w − 1 (so r∗w = 1 + εw). Now notice that (r∗w)w = (1 + εw)w can be

bounded using inequality (7) as

e(1−εw/2)εww < (r∗w)
w < eεww.

Thus we can bound

OR(w) = R(r∗w, w) = R(1 + εw, w) ≥ 1 + 2
e(1−εw/2)εww − 1

ε2ww

= 1 + 2
e(1−εw/2)εww − 1
(εww)2

w

Now, let dw = (1− εw/2) εww, so the above becomes

OR(w) ≥ 1 + 2e
dw − 1
d2w

w

(
1− εw

2

)2
> min
d>0

[
2
ed − 1
d2

]
w

(
1− εw

2

)2
= κw

(
1− εw

2

)2
.

Next, let δ be an arbitrary positive constant. From Lemma 6.2 we know that εw ≤ 5
w for w ≥ 5, so

for all w ≥ max
(
3
δ , 5
)
we have

(
1− εw

2

)2
≥
(
1− 5
2w

)2
≥ 1− 3

w
≥ 1− δ,

18

which implies that

OR(w) ≥ κw
(
1− εw

2

)2
≥ κw(1 − δ).

Since this is true for arbitrarily small δ, this then implies that OR(w) ≥ κw − o(w), as claimed in
the lemma.

The main theorem of this section is a direct and obvious consequence of Lemma 6.1 and

Lemma 6.3. Of the several definitions of asymptotic notation, we use the standard one in which

f(n) is o(g(n)) if for any constant c > 0 there is a constant n0 ≥ 1 such that |f(n)| < cg(n) for
all n ≥ n0 — the absolute value on f(n) is necessary for the following theorem to be an exact
statement.

Theorem 6.1 The competitive ratio for algorithm SmartCow is κw + o(w), where

κ = min
d>0

[
2
ed − 1
d2

]
≈ 3.088.

The use of o(w) in the above theorem is entirely due to the lower bound on the growth rate. As

far as the algorithm’s performance goes, Lemma 6.1 shows that it is perfectly valid (and somewhat

stronger than Theorem 6.1) to say that the competitive ratio is at most κw + Θ(1). For the sake

of comparison, recall that the optimal deterministic algorithm of Baeza-Yates, Culberson, and

Rawlins [2] has competitive ratio 2ew +Θ(1), or approximately 5.437w +Θ(1).

7 Conclusions

In this paper we have given a new randomized algorithm, SmartCow, for the cow-path problem. We

analyzed the competitive ratio of SmartCow, and showed that randomization gives our algorithm

almost a factor of two improvement over the best possible deterministic algorithm. Furthermore,

we have shown that for the important two-path problem our algorithm is an optimal randomized

algorithm. The lower bound proof of Section 4 includes a general form for lower bounds when

w ≥ 2, but a closed form was only obtained for w = 2 (showing that SmartCow is optimal for
w = 2). This was recently extended by Kao, Ma, Sipser, and Yin [10], who give an involved proof

showing that SmartCow is in fact optimal for all w ≥ 2.

19

References

[1] Aslam, J. A., and Dhagat, A. (1991), Searching in the presence of linearly bounded errors,

in “Proceedings, 23rd ACM Symposium on Theory of Computing,” pp. 486–493.

[2] Baeza-Yates, R. A., Culberson, J. C., and Rawlins, G. J. E. (1993), Searching in the

plane, Info. and Comput. 16, pp. 234–252.

[3] Bentley, J. L., and Yao, A. C.-C. (1976), An almost optimal algorithm for unbounded

searching, Inform. Process. Lett. 5, pp. 82-87.

[4] Blum, A., Raghavan, P., and Schieber, B. (1991), Navigating in unfamiliar geometric

terrain, in “Proceedings, 23rd ACM Symposium on Theory of Computing,” pp. 494–504.

[5] Chrobak, M., and Larmore, L. (1991), The server problem and on-line games, in “On-

Line Algorithms: Proceedings of a DIMACS Workshop,” pp. 11–64, American Mathematical

Society.

[6] Deng, X., and Papadimitriou, C. H. (1990), Exploring an unknown graph, in “Proceed-

ings, 31st IEEE Symposium on Foundations of Computer Science,” pp. 355–361.

[7] Fiat, A., Foster, D. P., Karloff, H., Rabani, Y., Ravid, Y., and Vishwanathan,

S. (1991), Competitive algorithms for layered graph traversal, in “Proceedings, 32nd IEEE

Symposium on Foundations of Computer Science,” pp. 288–297.

[8] Fiat, A., Rabani, Y., and Ravid, Y. (1990), Competitive k-server algorithms, in “Pro-

ceedings, 31st IEEE Symposium on Foundations of Computer Science,” pp. 454–463.

[9] Gal, S. (1980), “Search Games,” Academic Press, New York.

[10] Kao, M. Y., Ma, Y., Sipser, M., and Yin, Y. (1994), Optimal constructions of hybrid

algorithms, in “Proceedings, 5th ACM-SIAM Symposium on Discrete Algorithms,” pp. 372–

381.

[11] Kao, M. Y., Reif, J. H., and Tate, S. R. (1993), Searching in an unknown environment:

An optimal randomized algorithm for the cow-path problem, in “Proceedings, 4th ACM-SIAM

Symposium on Discrete Algorithms,” pp. 441–447.

20

[12] Pearl, J. (1984), “Heuristics: Intelligent Search Strategies for Computer Problem Solving,”

Addison-Wesley Publishing Company, Reading, MA.

[13] Papadimitriou, C. H., and Yannakakis, M. (1989), Shortest paths without a map, The-

oretical Comput. Sci. 84, pp. 127–150.

[14] Rivest, R. L., Meyer, A. R., Kleitman, D. J., Winklmann, K., and Spencer, J.

(1980), Coping with errors in binary search procedures, J. Comput. System Sci. 20, pp. 396–

404.

[15] Sleator, D. D., and Tarjan, R. E. (1985), Amortized efficiency of list update and paging

rules, Comm. ACM 28, pp. 202–208.

[16] Yao, A. (1977), Probabilistic computations: Towards a unified measure of complexity, in

“Proceedings, 18th IEEE Symposium on Foundations of Computer Science,” pp. 222–227.

21

