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1. INTRODUCTION

Hierarchical space decompositions have proved to be very important for construct-
ing efficient algorithms that solve problems with a geometric basis (references [Bent-
ley 1980; Vaidya 1989; Callahan and Kosaraju 1995] are particularly prominent ex-
amples). From simple geometric algorithms like closest pair computation to more
complex algorithms such as the tree-based algorithms for n-body force computa-
tion, a key component typically is the partitioning of space into regions that can
be treated as separate units, and combined to form larger regions when possible.
All of the problems we examine in this paper have as input a set of points in d-
dimensional space (we restrict d to be 2 or 3 in our experiments), and so dividing
space into non-overlapping regions induces a partitioning of the input points.

While this spatial decomposition theme is underlying many algorithms, in many
cases the application is ad-hoc. A key contribution of Callahan and Kosaraju [Calla-
han and Kosaraju 1995] unified these notions under a common framework, defining
concepts such as fair split trees and well-separated realizations that can be applied
in many different situations. The basic idea is that given a decomposition tree, you
next compute a well-separated realization, which is a list of pairs of regions that
can be enclosed within balls of the same diameter which are separated by a distance
that is at least a constant fraction of the ball diameter (this constant is the separa-
tion constant, and is a parameter that can be adjusted for different applications).
In many applications, such well-separated regions can be processed as single units,
rather than separately processing the potentially large number of points contained
in the region. Callahan and Kosaraju go on to show that if the decomposition is
a fair split tree, which is true for all decompositions in this paper, the size of the
realization (i.e., the number of region pairs) is O(n), and so the applications also
typically run in O(n) time. In their work they applied these notions to derive effi-
cient algorithms for the closest pair problem, for the k-nearest neighbors problem
(including a fairly simple algorithm for the sub-case of all nearest neighbors), and
for n-body potential field computation [Callahan and Kosaraju 1995].

In this paper, we implement and explore four different spatial decomposition
techniques that fit into the Callahan and Kosaraju framework, including a new
algorithm that is presented for the first time in this paper, and that was derived
as a result of experimental experience with the previous algorithms. This new
algorithm outperforms the others in practice, but requires modest assumptions
about the input. We also consider the decompositions in the context of three
different applications: closest pair, all nearest neighbors, and n-body computation.

1.1 The Algorithms

Here we give a brief description of each of the decomposition algorithms that we
test.

Algorithm Reg constructs a region-based k-d tree (see, for example, [Goodrich
and Tamassia 1998, pp. 597ff]). This is a regular spatial decomposition, where
regions are subdivided by taking each dimension in turn and splitting each
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non-empty region into two identical size subregions along that dimension. If
we consider one round of splitting in each dimension to be one “large split,” then
we get the well-known quad-tree data structure in two dimensions, and the oct-
tree in three dimensions. Many algorithms are based on this style of splitting,
including the decomposition used in Greengard’s original multipole algorithm
for the n-body problem [Greengard and Rokhlin 1987; Carrier et al. 1988]. This
algorithm has the benefit that it is simple to implement, and the constants in
the running time are quite low. The time complexity depends on the actual
distribution of the input data, and when the input is uniformly distributed the
expected time is O(nlogn). Unfortunately, as the data becomes more non-
uniform the efficiency of Reg decreases, and in fact when the depth of the tree
cannot be limited the running time is unbounded. Note that in our experiments,
all data meet an additional requirement that input coordinates are represented
in fixed point with O(logn) bits of precision, which does limit the depth of the
decomposition tree to O(logn) and consequently bounds the running time by
O(nlogn). Furthermore, while we can still generate non-uniform data under
this restriction, our experiments show that Reg is not terribly sensitive to the
input distribution, and the simplicity of the algorithm leads to very fast code
for a variety of distributions (see the end of Section 2 for more details).

Algorithm CK (from the paper of Callahan and Kosaraju [Callahan and Kosaraju
1995]) bases the region decomposition on the positions of the points, rather than
blindly splitting each region in half. This decomposition is build from the top
down, much like Reg does, partitioning the input points as regions are split.
The chief benefit of this algorithm is that the time complexity is O(nlogn) in
the algebraic computation model, regardless of input distribution.

Algorithm RT (from the paper of Reif and Tate [Reif and Tate 1999]) beats the
asymptotic running time of the two previous algorithms by making a mild
assumption about the input representation, effectively limiting the number of
bits of precision for each input coordinate to O(logn). This seems to be a
reasonable assumption, and by using bucketing ideas similar to those used in
radix sort [Knuth 1998] or the van Emde Boas priority queue [van Emde Boas
1977; van Emde Boas et al. 1977], this algorithm achieves a time complexity
of O(nloglogn). Unlike the two algorithms described above, RT builds the
decomposition tree in bottom-up phases, where in each phase the points are
inserted using bucketing techniques into the leaf nodes of an auxiliary data
structure called the “support tree.” The tree paths are then discovered by
moving from the leaf positions toward the root in the support tree, and the
correct decomposition tree nodes and regions are then constructed using the
information obtained in this way from the support tree. A careful use of binary
search on the tree levels results in the final complexity of O(nloglogn).

Algorithm TX (introduced in this paper!) was designed based on our experi-
ence implementing the three algorithms described above, and has two different
variants, both of which use bucketing and bottom-up construction. The first

IThe initials can be viewed as either the authors of this paper, or the state in which the algorithm
was invented!



4 . S. R. Tate and K. Xu

variant, TX-BS, is based on re-mapping the bucketing scheme used by RT, us-
ing word-sized bit vector operations in order to keep the time complexity at
O(nloglogn), but with smaller constants so the algorithm is faster in practice.
The binary search of levels is retained from RT. The second variant, TX-AL,
retains the same flavor of exploiting the input representation and using buck-
eting, but avoids the binary search of tree levels by explicitly going through
all levels from the leaves to the root. The drawback is that TX-AL has time
complexity ©(nlogn) in the worst case, so the asymptotic complexity is the
same as the first two algorithms. Despite this, TX-AL is the fastest algorithm
in our experiments, handily beating the other three algorithms and the other
variation of this algorithm. The speed comes from a combination of two fac-
tors: the bucketing technique introduced by algorithm RT, and the willingness
to sacrifice asymptotic complexity for a simpler algorithm with lower constants
in the running time.

In addition to examining the practical efficiency of these algorithms, several of
the algorithms have parameters which can be adjusted (for example, in the bucket-
based algorithms RT and TX the selection of the size of a data structure called
the “support tree” can be tuned), and we examine the effect of changing these
parameters on both the running time of the decomposition algorithm and on the
quality of the decomposition, as measured by the impact on the application using
the decomposition.

This study was begun as an experimental study of algorithm RT, to see if the
asymptotic improvement of ©(nlogn) to ©(nloglogn) was seen in practice. As the
difference between logn and loglogn is smaller than a factor of 5 for n < 10%, the
question of whether the increased intricacy of RT (and the corresponding increase
in constant factors) would obliterate the asymptotic improvement, an important
practical question, could only be determined through careful implementation and
experimentation. The insight that was obtained through these implementations
allowed us to design the new TX algorithm, which was an unexpected bonus.

1.2 Experimental Setting and Summary of Results

Our experimental setting was designed to allow great flexibility in exploring de-
compositions and applications that use these decompositions. We first designed a
set of clean C++ class interfaces that captures how applications interact with the
decomposition algorithms and resulting decompositions, and then built an exper-
imental environment where different decompositions could be easily “plugged in”
to the various applications. For example, in the directory for decomposition Reg,
the user can type “make closestpair2” to build the closest pair application (in 2
dimensions) with the Reg decomposition, or “make ann3” to build the all-nearest-
neighbors application (in 3 dimensions) with the Reg decomposition. Conversely,
a user working in the directory with the closest pair application could enter the
command “make reg2” to make that application with the Reg decomposition, or
“make rt2” to make that application with the RT decomposition. We implemented
all four decomposition algorithms, and three applications: closest pair, all-nearest-
neighbors, and n-body potential field evaluation (the first two applications work
in any number of dimensions, but the potential field evaluation works using the
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potential field formulas for two dimensions only — we hope to implement three-
dimensional n-body in the near future). All experimental times presented in this
paper were obtained on a machine with four 200 MHz Pentium Pro processors with
512k cache each (note however that all our code is sequential for these tests) and
512 MB of shared RAM. This machine was running the Linux 2.2.12 kernel with
the eges 1.1.2 C++ compiler, and tests were run when the machine was otherwise
idle (so there was no competition for resources).

All test inputs met the requirements for algorithms RT and TX, so the input
consisted of points whose coordinates were integers (or, equivalently, fixed point
values) with O(logn) bits. Inputs were generated by a separate program, which
could generate points that were uniformly distributed, distributed as Gaussian or
clustered Gaussian, or constructed as several different types of contrived “worst-
case” inputs.

The relative running times of the algorithms were fairly consistent across different
input distributions, and from slowest to fastest the algorithms were CK, RT, TX-BS,
Reg, and TX-AL (see, for example, the main results in Figure 1); however, note that
there were some minor re-arrangements in this ordering at extreme distributions and
worst-case inputs. The two asymptotically fastest algorithms, RT and TX-BS, were
consistently slower than several of the algorithms with worse asymptotic complexity,
due in large part to the larger constants in the running time. The fastest algorithm,
TX-AL, was significantly faster than the second fastest decomposition, Reg, showing
the validity of the bucketing concept, even if the complicated techniques required
to reduce the asymptotic complexity to O(n loglogn) do not seem to be efficient in
practice.

Additional tests were performed to determine the practicality of computing tight
bounding boxes for all regions prior to computing the well-separated realization, to
test the dependence of decomposition time and realization size on the variance of
a Gaussian distribution, to measure growth of realization size with input size, and
to determine appropriate support tree size for algorithms RT and TX. While the
main focus of this project is on the decomposition algorithms, in Section 4 we also
examine several issues regarding applications: relative amounts of time spent in
decomposition, realization, and application; and dependence of application time on
realization size. We also compare times for several application-specific algorithms
for closest pair to our general decomposition plus application approach, and show
that the general “decomposition toolbox” approach is competitive with specially
tuned applications.

2. BASIC DECOMPOSITION TESTS

To get a fair and accurate comparison of the different spatial decomposition tech-
niques on uniform data, we construct a large set of inputs. For two-dimensional
data, we begin with a small input of 5000 points, increasing the number of points
using a step-size of 5000 until reaching a fairly large input of 500,000 points. For
three-dimensional data, we use the same starting size and step size, but the max-
imum size is only 300,000 points due to memory limitations in our test machine.
We also performed some tests with Gaussian and clustered Gaussian distributions,
where the clustered Gaussian attempts to generate a natural looking non-uniform
distribution of different size clusters of points. Pictures of sample data from these
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Fig. 1. Running time of the decomposition algorithms (uniform distribution)

distributions are given in the appendix for reference. For each input size, we gener-
ate 5 different input instances and run each decomposition 3 times on each instance
in an attempt to minimize the effect of timing inaccuracies. The decomposition time
is measured and the final result for each input size is the average of the 15 runs.
The results of the basic tests on two and three dimensional uniform data is shown
in Figure 1; the results from the non-uniform input distributions are in many ways
similar, and are included in the appendix for the interested reader (a test specifically
exploring the dependence on uniformity is presented later in this section).

The experiment results reflect the significance of the hidden constants in the
algorithms’ asymptotic complexity. Comparing the algorithms from prior literature,
we notice that while the running time of both Reg and CK is ©(nlogn), and the
running time of RT is ©(nloglogn), for the reasonable range of n values that
we tested Reg is much faster than CK and RT on both uniform and the Gaussian-
distributed non-uniform data due to its straightforward splitting strategy. Although
algorithm CK and RT are able to handle non-uniform inputs more gracefully, they
both use complex data structures. In CK, every region to be split maintains for
each dimension two doubly linked lists of points (one original and one copy that
is manipulated) sorted based on their coordinates in that dimension, and cross-
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referenced between dimensions. Splitting a region involves constructing these lists
for the subregions as well. In RT, each active node in the support tree, the auxiliary
data structure that guides construction of the decomposition tree, maintains a list
of its active descendants. The experiments show that these list operations, which
require memory allocation and deallocation, are quite inefficient, and while we
minimized the effect of this by careful consideration of memory allocation issues
(see the next section for details), the added complexity of these data structures
results in non-trivial constants in the running time of these algorithms. Our new
algorithms TX-BS and TX-AL make several improvements to reduce these constants,
and the times for these algorithms are also shown in Figure 1. Further discussion
of these algorithms is in Section 3.

2.1 Effect of Non-uniform Inputs

While algorithm Reg has a significant advantage in its simplicity and good perfor-
mance on uniform data, its biggest drawback is decreased efficiency for non-uniform
inputs, with the worst-case in the algebraic computation model (although not with
our input restrictions) resulting in unbounded time complexity. Our experiments
show that this is a purely theoretical concern for our test data, as Reg is in fact very
fast on even non-uniform data in our tests (we tested with both clustered Gaussian
data and also an artificially-generated “worst-case” — the results of the latter test
are omitted from this extended abstract, but will be included in the full paper).
To see to what extent non-uniformity affects the algorithms, we created a set of
Gaussian distributed data, each instance containing 300,000 points and with the
standard deviation of the instances ranging from 100 to 16,000. The smaller the
standard deviation, the more tightly the points are clustered, and at the largest
standard deviation of 16,000 the data was visually indistinguishable from uniform
data.? The results of this test are shown in the upper graph of Figure 2 (the
other graph will be discussed in the next section). As can be seen from the graph,
the performance of algorithm Reg does get worse as the input becomes more non-
uniform, as we suspected, although the degradation is quite mild. Furthermore,
CK has only moderate fluctuations with uniformity, and RT and TX get slightly
better with non-uniform data (with some anomalous increases over small ranges of
standard deviations), which was also expected. However, these minor changes are
still not enough to overcome the larger differences in running time constants, and
Reg remains the fastest performing algorithm from among those in prior literature.

3. ALGORITHMIC IMPROVEMENTS

After initial implementations and tests, the results and experience with these im-
plementations suggested algorithmic and implementation improvements, which we
outline in this section.

All of the decomposition algorithms perform extensive manipulations of lists,
especially in the case of CK and RT, whether they are lists of points or lists of
tree nodes. Our initial tests showed that a very large amount of time was spent
in allocating and deallocating memory for these lists, suggesting that using the

2Data that falls outside of our “universe” is wrapped around, which helps large variance distribu-
tions become more uniform.
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general-purpose new and delete facilities of C++ for all list node manipulation was
inefficient. We changed the allocation strategy for these lists by allocating blocks
of list nodes at a time, and maintaining our own free lists for reusing the nodes.
This simple data structure change was applied to all decomposition algorithms, and
resulted in as much as a 45% speedup.

The next improvement involved changing the bucketing strategy used by algo-
rithm RT — this change is significant enough to consider the result a new algorithm,
and this re-mapped algorithm is what we refer to by TX (or TX-BS) in this paper.
Algorithm RT introduced the notion of a “support tree”, which is essentially a com-
plete region-based k-d tree with a given number of levels. The support tree nodes
are stored in an array, and we use bucketing techniques to map points to array
indices (or tree nodes). In order to keep the bucketing operation constant time, we
map points to array indices by stripping out the appropriate number and position
of bits from each coordinate of a point, and then concatenating these bit-strings
together with a leading 1 bit. For example, if the bits to be used from dimension 1
are asasaiag and those from dimension 2 are bzboby by, then the index of this node
(which must be on level 8 of the tree since there is a total of 8 bits being used) is
the binary number lasasaiaopbsbebiby. In d dimensions this takes only O(d) time,
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and algorithm RT must do this at most loglogn times in order to insert a point
into the support tree leading to the O(dloglogn) time bound per point (RT must
also overcome several other nontrivial problems to give the overall O(nloglogn)
time bound, but we concentrate here only on the bucketing operation).

While the technique from RT is certainly clean theoretically, the bit extraction
and manipulation introduces moderate constants into the running time. Further-
more, simply moving from a node to its parent in the support tree often involves
removing a bit from the middle of the node index, and moving up several levels to
an ancestor (which RT must do often) involves removing bits from several different
locations throughout the node index. The masking and shifting operations required
for this can become complex, resulting in a moderate constant overhead for this
mapping.

Binary heaps also use a mapping of tree nodes into an array, and while this was
a partial inspiration in the development of bucketing for RT, the exact mapping
was avoided because points cannot be mapped to arbitrary levels in the tree in
constant time. In the bit-string example given above, since the k-d tree we are
representing alternates repeatedly among dimension being split, the required tree
index for this point in this mapping would be lasbsasboaibiapby. With ©(logn)
bits per coordinate, this seems to require ©(logn) time per mapping in order to
interleave all the bits. Despite this apparent increase, some other operations are
much simpler. For example, moving up k levels to a node’s ancestor only involves
shifting the rightmost & bits out of the node index, and finding “representatives” (an
important notion from RT that involves clearing certain bits in a node’s index) now
only involves masking out a certain number of least significant bits. The possibility
of simplifying these operations so substantially provided motivation to examine this
mapping again to see if something feasible could be obtained.

Since we are considering a word-based computation model, where words contain
O(logn) bits, it turns out we can actually compute this point-to-index mapping
in O(loglogn) time using bit-vector operations on words. The key operation is
to “spread out” the bits from each coordinate so they can be combined in an
interleaved fashion. We use a divide-and-conquer scheme to spread the bits out:
first move the most significant half of the bits up so they start at the correct position,
then move up half of each of these halves, then half of each of the resulting quarters,
etc. The exact code for this is shown in Algorithm 1 (<< is the “shift left” operator,
as in C or C++).

The complexity of this algorithm is clearly O(logb), and since b < logn we can
express the running time as O(loglogn). Even though this is an improvement over
the obvious algorithm for computing these indices, it initially does not seem to be
enough. Since RT looks at ©(loglogn) different support tree nodes in order to
insert a point, using this algorithm for each indexing operation would increase the
time for inserting a point to ©((loglogn)?). However, careful examination of RT
shows that every indexing operation except for the very first involves moving up the
tree to an ancestor of the “current node.” As described above, this is now a very
simple constant-time operation (a right shift), so the process of inserting a point
now involves an initial ©(loglogn) time indexing operation, followed by ©(loglogn)
additional constant-time indexing operations; therefore, the asymptotic time bound
is maintained. Due to page limits for this extended abstract, we omit further details,
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Algorithm 1 Bit spreading algorithm: x is input coordinate, b is the number of
bits in x, and d is the number of dimensions. Effectively puts d — 1 zeros between
each bit in the input x.

s « 2018b1 [Shift amount: smallest power of 2 that is > b}
m «— (1 <<'s) —1 {Mask: set least significant s bits to 1}
fori«—1tod—1do

m — (m << 2s) OR m {repeat bits throughout mask}
end for
while s > 1 do

s s/2

m < m XOR (m << §)

x «— ((x AND NOT m) << (s(d —1))) OR (z AND m)
end while

which will be available in the full paper, but summarize in the following theorem.

THEOREM 1. Given m points (a subset of the initial n-point input), TX-BS builds
a support tree that is isomorphic to that produced by Algorithm RT, and does so in
O(mloglogn) worst-case time.

This re-mapping change alone improved the running time by approximately 50%,
but also allowed a further improvement: the new mapping made possible simple
array-based lists to keep track of non-empty (or “active”) support tree nodes, re-
moving still more of the penalties imposed by allocating and freeing linked list
nodes. Changing to the array-based lists improved running time by approximately
an additional 5%.

Our final practical improvement involves using bucketing with the mapping just
described, but we give up on the notion of binary search within the levels of the
support tree. Instead, we first place all points into the appropriate leaf nodes of
the support tree, and then propagate the non-empty nodes up the tree, joining
nodes under a common parent when paths merge. We call this algorithm TX-AL
(for “all levels”). Since the support tree has ©(logn) levels, the worst-case time to
insert m points becomes O(mlogn). However, it’s also important to notice that in
a dense support tree (one in which a constant fraction of the leaf nodes are non-
empty), the asymptotic complexity of this algorithm is actually O(m), beating out
all the previous algorithms! Unfortunately, we cannot guarantee that all support
trees used in a decomposition will be dense, so this observation does not help the
worst-case asymptotic complexity of the complete decomposition algorithm.

3.1 Support Tree Size

One key parameter that we experimented with in the RT and TX algorithms was the
size of the support tree. Any support tree with size O(n) and Q(n¢) for some ¢ > 0
can achieve the O(nloglogn) time bound for the asymptotically fastest algorithms.
In the theoretical presentation of these algorithms, the support tree is typically
O(n) in size, but our experiments show that smaller support tree sizes work better
for our input distributions in practice. In particular, the theoretical presentation
of algorithm RT [Reif and Tate 1999] gives a support tree with d& log, n] levels;
however, our experiments with the improved version TX showed that in fact for
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uniformly distributed 2d inputs the optimal support tree size grows more closely
to the function dL% log,,(4n)], giving a support tree size of approximately n°-6.
We do note however, that in other distributions and dimensions this is no longer
optimal.

In particular, the discontinuities evident in Figure 1 (particularly the 3d data)
are due to non-optimal support tree size selection. This became apparent in tests
in which we manually selected the support tree size: For example, our formula says
that in 3 dimensions we should switch from 9 levels to 12 levels at n = 250, 000, but
forcing a support tree with 12 levels for n = 240,000 improved the running time,
showing that while the support tree size formula is optimized for 2 dimensions, it
simply switches “too late” in 3 dimensions. Similar experimental exploration shows
that other discontinuities in the running time graphs have similar explanations. In
addition, the distribution of the input also affects what size support tree is best to
use, as revealed by the bottom graph of Figure 2. This graph shows the running
time as a function of standard deviation (as explained in the previous section),
but with 4 plots in which the depth of the support tree is fixed at 8, 10, 12, and
14. For high variance data (more-or-less uniform), the performance of depth 10
and depth 12 support trees is very close, but as the standard deviation decreases,
the depth 12 tree becomes significantly more efficient. At the largest difference,
the depth 10 tree is over 25% slower than the depth 12 tree. As the standard
deviation decreases further, the depth 14 tree is temporarily the fastest, and then
for very small standard deviation the depth 10 becomes best. Unfortunately, at
this point, we do not know how to automatically adjust the support tree in such
situations. An interesting open problem which we are now investigating involves
selecting the proper support tree based on not only the size of the input, but
measurable distribution characteristics as well.

4. REALIZATION AND APPLICATION TESTS

While the main focus of our work is on the algorithms for computing the spatial
decomposition, we also consider these algorithms in the context of larger applica-
tions of the decompositions. After the decomposition tree is built, two more phases
are performed: the well-separated realization is computed as described in the Intro-
duction, and then the application is run using this realization. The applications we
studied have traditionally been solved in such a manner, although in some previous
algorithms the realization is sometimes not explicitly computed. For example, in his
original paper on the multipole algorithm for n-body force evaluation, Greengard
uses a quad-tree decomposition with the realization implied by the regular geomet-
ric structure of this tree (in fact, at the time Greengard developed his algorithm
the notion of realizations hadn’t been introduced yet).

Our first test using applications was to determine what amount of time is spent
in each of the three phases of a decomposition-realization-application combination.
Figure 3 shows the results of this test on 2-d uniform data for the best-performing
decomposition (TX-AL) and the three different applications. For each of the three
applications, the percentage of time spent in each of the three phases is remarkably
consistent across all input sizes, and is shown below.
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| Application | Decomposition | Realization | Application |
Closest Pair 27% 67% 6%
All Nearest Neighbors 17% 42% 41%
N-body Computation 2% 5% 93%

The applications show an interesting range of complexities, from very simple to
fairly complex. This also gives a measure of how improvements in the decomposition
algorithm get reflected in the overall application time: closest pair can be greatly
improved by a faster decomposition, but N-body depends more on fast application
code and a faster decomposition has relatively little effect. Note that we only
used the fastest decomposition in these tests in order to determine the impact of
future improvements — the improvement from older and slightly slower algorithms
is more significant than indicated by these figures. It is also interesting to note
that the realization computation takes up a relatively large amount of time. As
the realization is one of the concepts that makes this decomposition framework
applicable to a variety of problems, and yet it takes a large amount of the time, we
plan to investigate ways of reducing the time required for this phase in the future.

The next test we performed regarding the realization was to simply determine
the actual realization size for various inputs. Callahan and Kosaraju proved that
the realization contains at most

2(n —1)(3(sVd +2Vd + 1) + 2)* (1)

pairs, where s is the separation constant, which we fix to s = 2.1 in these tests.
The leading term on this bound becomes 1003n and 36,400n for two and three
dimensions, respectively. While this is sufficient to show that the realization is
O(n) size (when d is considered a constant), the constants are quite large and the
analysis suggests that this bound might not be the tightest possible.

Figure 4 shows the actual realization sizes as produced by both Reg and CK, for
both uniform and clustered inputs, with the upper graph being for two dimensions
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Fig. 4. Realization size of different algorithms and input distributions

and the lower graph being for three dimensions. Note that RT and TX produce the
exact same tree (and hence realization) as Reg, so only one such tree is represented
in the graph. The point-based decomposition CK produces a slightly smaller real-
ization (consistently around 6.7% smaller in two dimensions), and the distribution
has surprisingly little effect on the realization size. Furthermore, the measured
realization size grows as 13.7n and 66n for CK in two and three dimensions, respec-
tively, and at the slightly faster 14.6n and 73n for Reg in two and three dimensions.
This demonstrates that for uniform data, and this particular clustered distribution,
the bound (1) is in fact several orders of magnitude larger than necessary.

In our next test, we performed the following experiment: in the traditional top-
down regular decomposition (as used by Greengard, for example), the regions in the
decomposition tree are defined by the region splitting of the decomposition, with no
regard for the points actually contained in the region. Since the realization benefits
from regions being well-separated (which, recall, is a function of the region size
and region boundaries), it is a sensible extension of these algorithms to compute
a tight “bounding box” for the points in each region. These tight boxes are then
used to compute the realization. The CK algorithm computes these tight bounding
boxes as a matter of course in the decomposition, but computing such bounding
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Fig. 5. Tight bounding effect on realization size and application time (all nearest neighbors)

boxes in the top-down Reg algorithm during the decomposition would be somewhat
inefficient since it would require scanning the list of points for each internal node
for minimum and maximum values in each dimension. We avoid this problem by
computing the bounding boxes after the decomposition, working from the bottom
up and merging minimal regions. This is a fast O(n) time operation.

The results of this bounding box test are shown in Figure 5, where the graph on
the top shows the realization size for both tight and non-tight (traditional) bounding
boxes on uniformly distributed data in two dimensions. The tight bounding boxes
consistently halved the size of the realization. The bottom graph in Figure 5 shows
how the running time of one particular application (application phase only), all
nearest neighbors, is affected by the tight bounding box. The graph is almost
identical in shape to the realization size graph above, showing the linear dependence
of the application’s time on the realization size. Thus, improvements in the quality
of the decomposition (such as using tight bounding boxes) are reflected with faster
application times. We pay for the time to compute the tight bounding boxes of
course, but tests show that this seems to always be a clear win: for example,
computing tight bounding boxes for 500,000 points took 0.8 seconds, but since
the realization was smaller it actually took 9.4 seconds less time to compute the
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realization! This is a net savings of 8.6 seconds, even before any improvement in the
application time. We note that without explicitly computing the realization this
notion of a tight bounding box is not applicable, so in particular using the original
Greengard multipole algorithm there was no way to get the kind of gains that are
possible by using this technique with the decomposition/realization framework.

4.1 Some final tests

In a final test, we compared the running time of our decomposition-based im-
plementation of closest pair and all-nearest neighbors with the running time of a
couple of other implemented algorithms for this problem. In particular, we use
a simple sweepline algorithm with ©(n?) worst-case complexity but good average
case complexity, and for closest pair we also use the publicly available closest pair
implementation distributed with LEDA (the Library of Efficient Data types and
Algorithms) [Mehlhorn et al. 1999]. We also include experimental (and analyti-
cally extrapolated) times for the naive ©(n?) algorithms as an interesting contrast,
although this is clearly an unfair comparison.

We also tried the following experiment: since computing and storing the full
realization seems wasteful for a single run of a simple application like closest pair,
we also included a modified implementation in which we change the realization
construction in two ways: we run the closest pair application while the realization
is being computed, and we don’t store the realization for future use (since it is no
longer needed afterwards). We call this modification “Special TX-AL.” The times
in the table below summarize our findings, where the times are in seconds, and
the times for the decomposition-based algorithms reflect the cumulative time for
all three phases of the algorithm.

Closest Pair All-Nearest-Neighbors
100,000 | 300,000 | 500,000 || 100,000 [ 300,000 | 500,000

O(n?) search 1140 | 10,400 | 28,900 || 2560 | 22,700 | 63,000
Sweepline 0.7 2.8 5.9 5.7 29.8 64.3
LEDA 1.3 5.7 10.9 N/A | N/A | NJ/A
Special TX-AL 3.5 11.1 18.7 N/A N/A N/A
TX-AL w/app 4.1 12.0 20.0 6.2 18.4 31.0

From these results we see evidence of the unfortunate reality that, particularly
for simple problems such as closest pair, more general solutions are often slower
than special-purpose solutions. In particular, the techniques used in these algo-
rithms get more and more general as you go down the rows of the table (ignoring
the first row), and the times get consistently slower. Still, it is somewhat en-
couraging that we can get within a reasonable factor of the best special-purpose
algorithms with the general-purpose decomposition/realization/application frame-
work, and beat the special-purpose algorithm in the case of large inputs for all
nearest neighbors.

We would like to compare the other applications with special-purpose code as
well, but only implementations of closest pair algorithms were readily available. We
will do further studies if other implementations are discovered.
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5. CONCLUSIONS

This study began as a test of the practicality of the asymptotically superior algo-
rithm RT, as compared to other previous algorithms. Guided by initial results, this
allowed us to develop a new algorithm TX that was faster than the other algorithms
we tested, and we believe this to be the fastest decomposition algorithm known at
this time. Even though the TX-AL variant is not asymptotically optimal in the
worst-case, the lower constants and the efficiency of the bucketing techniques (as
introduced in RT) result in an algorithm that is almost twice as fast as the next
fastest one in our tests.

Since these algorithmic improvements would not have been made without work-
ing with implementations (there is no theoretical improvement over existing algo-
rithms), we believe this speaks very strongly for experimental algorithms work. In
particular, while large asymptotic improvements are probably the most important
part of good algorithm design, even improvements that do not affect the asymptotic
complexity can be worthwhile (and in fact, small asymptotic improvements such as
the ©(nlogn) to O(nloglogn) improvements examined in this paper may actually
be harmful in practice!).

There are several issues that we are currently investigating, and some results
that were omitted due to page bounds for this extended abstract. In particular,
we are exploring ways of more effectively determining the support tree size to be
used based on measurable data properties, parallel versions of these algorithms,
integrating some of these ideas (in particular the realization and tight bounding box
ideas) into other existing applications such as the FastCap capacitance extraction
tool [Nabors and White 1991], and the effect of changing the separation constant
on overall application time.
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APPENDIX
A. EXAMPLE INPUTS AND ADDITIONAL GRAPHS

Figures 6 and 7 show example inputs in uniform, Gaussian, and clustered Gaus-

sian distributions, while Figure 8 shows decomposition running times for clustered

Gaussian inputs in two and three dimensions.
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