
OPTIMAL SIZE INTEGER DIVISION CIRCUITS∗

JOHN H. REIF† AND STEPHEN R. TATE†

Abstract. Division is a fundamental problem for arithmetic and algebraic computation. This
paper describes Boolean circuits (of bounded fan-in) for integer division (finding reciprocals) that
have size O(M(n)) and depth O(logn log logn), where M(n) is the size complexity of O(logn)
depth integer multiplication circuits. Currently, M(n) is known to be O(n logn log logn), but any
improvement in this bound that preserves circuit depth will be reflected by a similar improvement
in the size complexity of our division algorithm. Previously, no one has been able to derive a
division circuit with size O(n logc n) for any c, and simultaneous depth less than Ω(log2 n). The
circuit families described in this paper are logspace uniform; that is, they can be constructed by a
deterministic Turing machine in space O(logn).

The results match the best-known depth bounds for logspace uniform circuits, and are optimal
in size.

The general method of high-order iterative formulas is of independent interest as a way of ef-
ficiently using parallel processors to solve algebraic problems. In particular, this algorithm implies
that any rational function can be evaluated in these complexity bounds.

As an introduction to high-order iterative methods a circuit is first presented for finding polyno-
mial reciprocals (where the coefficients come from an arbitrary ring, and ring operations are unit cost
in the circuit) in size O(PM(n)) and depth O(logn log logn), where PM(n) is the size complexity
of optimal depth polynomial multiplication.

Key words. algebraic computation, integer division, circuit complexity, powering

AMS(MOS) subject classifications. 68Q25, 68Q40

1. Introduction. In arithmetic and algebraic computation, the basic operations
are addition, subtraction, multiplication, and division. It is a fundamental problem
to find efficient algorithms for division, as it seems to be the most difficult of these
basic operations. Problems are studied with both sequential models (Turing machines
or bit-operation RAMs) and parallel models (circuits and bit-operation PRAMs);
the model that we use in this paper is the circuit. A circuit is an acyclic directed
graph with a set of nodes designated as input nodes (with zero fan-in), a set of
nodes designated as output nodes (with zero fan-out), and a function basis with the
elements labeling all noninput nodes. The value at any node is computed by applying
the function labeling that node to the values of its predecessors, which are found in
the same way — this goes on recursively until the input nodes are reached. Assigning
a vector of values to the input nodes and computing the value of each output node, a
circuit can be viewed as computing a function over vectors in the value domain. All
circuits discussed in this paper have the additional restriction that every node must
have fan-in bounded by some constant (without loss of generality, we can assume
that every node has no more than two predecessors). The size of a circuit is the
number of nodes in the circuit, and the depth of the circuit is the length of the longest
path from an input node to an output node. The circuits used in most of this paper
have function basis made up of the Boolean functions AND, OR, and NOT; these
are called bounded fan-in Boolean circuits and are the standard model for arithmetic

∗ Received by the editors September 28, 1988; accepted for publication (in revised form) January
24, 1990. This research was supported by National Science Foundation grant CCR-8696134, by grants
from the Office of Naval Research under contracts ONR-N00014-87-K-0310 and ONR-N00014-88-K-
0458, by the Defense Advanced Research Projects Agency contract DAAL03-88-K-0195, and by the
Air Force Office of Scientific Research contract AFOSR-87-0386.
† Department of Computer Science, Duke University, Durham, North Carolina 27706.

1

2 J. H. REIF AND S. R. TATE

computation. In § 3 (dealing with polynomial reciprocals) we use a circuit model with
operations in an arbitrary ring as the basis.

Optimal algorithms have been known for quite some time for addition and sub-
traction, and good algorithms exist for multiplication. If we let SM(n) be the sequen-
tial time complexity of multiplication and M(n) be the size complexity of O(log n)
depth multiplication using the circuit model, then the best known results are due to
Schönhage and Strassen [11] who give an algorithm based on discrete Fourier trans-
forms with SM(n) = O(n log n log logn) and M(n) = O(n log n log logn).

The problem of integer division was examined by Cook in his Ph.D. thesis [5],
and it was shown by using second-order Newton approximations that the sequential
time complexity of taking reciprocals is asymptotically the same as that of multipli-
cation. Unfortunately, this method does not carry over to the circuit model — for
size O(M(n)) division circuits, we require depth Ω(log2 n) from a direct translation
of Cook’s method of Newton iteration. In addition, no one has been able to derive
a new method for integer division with size O(M(n)) and depth less than Ω(log2 n)
until now.

A long-standing open question has been to match the optimal depth bounds ob-
tained for addition, subtraction, and multiplication with a division circuit of polyno-
mial size. Until 1983, no one had presented a circuit for finding reciprocals with poly-
nomial size and depth better than Ω(log2 n), then Reif presented a logspace uniform
circuit based on wrapped convolutions with depth O(log n(log logn)2) and slightly
more than polynomial size [8]. A year later Beame, Cook, and Hoover presented a
polynomial time uniform circuit based on Chinese remaindering with polynomial size
and depth O(log n) [3]. A revised paper by Reif reduced the depth bounds on the
logspace uniform circuit to O(log n log logn) while simultaneously achieving polyno-
mial size [9]. For giving deterministic space bounds, logspace uniform circuits are
vital as explained by Borodin [4]; in addition, the polynomial time uniform circuits
that have been given use polynomial size tables of precomputed values, which a purist
might find objectionable.

The size bounds for the above circuits are at least quadratic, and further work has
been done to decrease the size bounds while keeping the depth the same. Shankar and
Ramachandran [12] make a significant step in this direction by using discrete Fourier
transforms to reduce the problems in size. They then apply either Reif’s circuit (to
give a logspace uniform circuit), or the Beame, Cook, and Hoover circuit (to give a
polynomial time uniform circuit). The best depth bounds for each type of circuit are
matched, and the size of both circuits is O(n1+ε/ε4), for any sufficiently small ε > 0.
Independent work on a polynomial time uniform circuit by Hastad and Leighton [6]
resulted in an efficient circuit for Chinese remaindering which gave a division circuit
of size O(n1+ε) and depth O((1/ε2) logn), for ε > 0.

Until 1988, no one had given a circuit with depth less than Ω(log2 n), and si-
multaneous size O(n logc n) for any c. A preliminary version of this paper [10] gave
logspace uniform circuits that have size O(M(n)) and depth O(log n(log logn)2). Now
we improve these results and present logspace uniform circuits that have sizeO(M(n))
and depth O(log n log logn). Newton approximations of high degree are used to gain
as many bits as possible in the early stages, and thus reduce the overall number of
stages required. An important property of the new algorithm is that the size bound
of our circuit is asymptotically tight (within a constant factor) with the optimal size
bound of multiplication, so further improvements in multiplication would be mirrored
by improvements in integer division. Furthermore, by a classic result given in Aho,

OPTIMAL SIZE INTEGER DIVISION CIRCUITS 3

Hopcroft, and Ullman [1], multiplication can be done with a constant number of recip-
rocals, so our circuit has optimal size, while matching the best known depth bounds
for logspace uniform circuits. A result of Alt [2] immediately applies to our results to
give as a corollary that any rational function can be evaluated in O(M(n)) size and
O(log n log logn) depth.

We will first show how to compute reciprocals of polynomials in size O(PM(n))
and depth O(log n log logn), where PM(n) is the size complexity of O(log n) depth
polynomial multiplication. The polynomial problem provides a good introduction to
high-order iterative methods. High-order iterative methods date back to Euler; a
general discussion of high-order iteration formulas can be found in Traub [13]. The
method of using high-order Newton approximations is of independent interest as a
way of efficiently using processors in a parallel system.

2. Algorithm overview. In Cook’s reduction of division to multiplication, he
used second-order Newton approximations with each successive stage dealing with
twice the number of bits as its predecessor. The sequential complexity of a single
stage of second-order Newton iteration is O(SM(n)). Since SM(n) must be at least
linear, the geometric progression of approximation lengths makes the sum over all
stages no more than O(SM(n)). However, the circuit model of multiplication has size
M(n) and depth O(log n), and both size and depth must be summed over all stages.
The same effect is noticed with the geometrically decreasing sizes, and the overall
size of Cook’s division algorithm is O(M(n)). Unfortunately, since the depth is only
logarithmic, the fact that n is geometrically decreasing is not enough to keep the total
depth from increasing to Ω(log2 n) in the summation.

Our key observation was that since the size and depth of the first stages in Cook’s
algorithm are so small, considerably more work can be done than a simple second-order
approximation. Our algorithm consists of two parts: part A uses high-order Newton
approximations, and part B extends this result to n bits using O(log logn) second-
order approximations. We present a formula for calculating the kth order Newton
iteration for the reciprocal problem which increases the accuracy of an approximation
(in bits) by a factor of k. In the early stages, k can be made large, so much more
work can be done on each stage than simply doubling the number of bits as done by
Cook.

The value of k for a particular stage is selected by making the size of every
stage meet the same bound. The result is that the number of approximation stages
required drops from Ω(log n) to O(log logn) for both integer reciprocals and polyno-
mial reciprocals. The required number of iterations is heavily influenced by the size
complexity of taking large powers, and for integer powering we present a new, size
efficient powering algorithm.

3. High-order iterations for polynomial inverse. Let R = {D,+, ·, 0, 1}
be an arbitrary ring; we define a polynomial p(x) of degree n − 1 in R[X] to be
p(x) =

∑n−1
i=0 aix

i. In this section we will often define a new polynomial of degree k−1
by using the coefficients of the k highest degree terms of a higher-degree polynomial.
The degree k − 1 polynomial derived in this way from p(x) is denoted by pk(x) =∑k−1
i=0 an−k+ix

i. In problems dealing with polynomials we use the bounded fan-in
circuit model, but allow each node to compute either addition, multiplication, or
reciprocation in the ring R in unit size and unit depth. Note that since reciprocation
is allowed, some computations may be undefined.

The polynomial reciprocal problem as defined in Aho, Hopcroft, and Ullman [1]

4 J. H. REIF AND S. R. TATE

is to calculate a polynomial q(x) from a (n−1)st degree polynomial p(x) ∈ R[X] such
that

q(x) = RECIPROCAL(p(x)) =

⌊
x2n−2

p(x)

⌋
.1(1)

It is easy to see that q(x) must have degree n− 1.
As previously mentioned, high-order iterative methods take an estimate of length

d, and produce a new estimate of length kd. In the case of polynomials, we use
RECIPROCAL(pd(x)) as the length d “estimate” — note that RECIPROCAL(p(x))
can be written as RECIPROCAL(pn(x)). To produce the estimate of length kd, first
calculate the intermediate polynomial

r(x) = s(x)
k−1∑
j=0

[
x(k+1)d−2

]k−j−1 [
x(k+1)d−2 − pkd(x)s(x)

]j
,(2)

where s(x) = RECIPROCAL(pd(x)). Now let

q(x) =

⌊
r(x)

x(k−1)(kd−2)

⌋
.(3)

Lemma 3.1. Given s(x) = RECIPROCAL(pd(x)), the polynomial q(x) computed
from (3) is exactly RECIPROCAL(pkd(x)); furthermore, q(x) can be computed in
O(k3d log(kd)) size and O(log(kd)) depth.
Proof. First we prove the correctness of the iteration formula (3). The lemma can

be stated in a different (but equivalent) way; that is, that (3) produces a polynomial
q(x) such that q(x)pkd(x) = x

2kd−2 + t(x) where t(x) is some polynomial of degree
less than kd − 1. The polynomial s(x) satisfies pd(x)s(x) = x2d−2 + t1(x), where
degree[t1(x)] < d− 1.
Since pkd(x) = pd(x)x

(k−1)d + p′(x) (where degree[p′(x)] ≤ d(k − 1) − 1), mul-
tiplying by s(x) gives pkd(x)s(x) = x

(k+1)d−2 + x(k−1)dt1(x) + s(x)p′(x). For sim-
plicity of notation, let f(x) = x(k+1)d−2 and g(x) = −(x(k−1)dt1(x) + s(x)p′(x)), so
pkd(x)s(x) = f(x)− g(x). Using this notation the iteration formula gives

pkd(x)r(x) = [f(x)− g(x)]
k−1∑
j=0

[f(x)]k−j−1[g(x)]j

=

k−1∑
j=0

[f(x)]k−j [g(x)]j −
k∑
j=1

[f(x)]k−j [g(x)]j

= [f(x)]k − [g(x)]k
= x(k+1)kd−2k −

[
−(x(k−1)dt1(x) + s(x)p′(x))

]k
.

Now doing the division by x(k−1)(kd−2) (which is actually just a shift of coeffi-
cients) and discarding the remainder, we get

pkd(x)q(x) = x
2kd−2 −

⌊[−(x(k−1)dt1(x) + s(x)p′(x))]k
x(k−1)(kd−2)

⌋
.

1 The floor function for the division of polynomials is analogous to the floor function applied to
integers. In other words, in (1), q(x) is the unique polynomial such that x2n−2 = q(x)p(x) + r(x),
where r(x) is the remainder and satisfies degree[r(x)] < degree[p(x)].

OPTIMAL SIZE INTEGER DIVISION CIRCUITS 5

To simplify notation, let

t(x) = −
⌊[−(x(k−1)dt1(x) + s(x)p′(x))]k

x(k−1)(kd−2)

⌋
,

so pkd(x)q(x) = x
2kd−2 + t(x).

Examining the degrees of the components of t(x) we see that the numerator is
just g(x) which, on closer examination, satisfies degree[g(x)] ≤ kd − 2. After the
powering of g(x) we see that degree[g(x)]k ≤ k2d − 2k. The division gives t(x) with
degree[t(x)] ≤ kd− 2, and the correctness of our formula is proved.
To determine the complexity of the iteration formula, first note that a polynomial

of degree kd − 1 can be raised to the kth power in size O(k2d log(kd)) and depth
O(log(kd)) by using discrete Fourier transforms (see, for example, [9]). There are k
different powers to take and add up, and this cost dominates the entire calculation.
The total size is O(k3d log(kd)), and the total depth is O(log(kd)).

We repeatedly apply the iteration formula of (3) to get the complete polynomial
reciprocal algorithm. The details are described in the proof of the following theorem.

Theorem 3.2. The reciprocal of an (n− 1)st degree polynomial p(x) as defined
above can be computed in O(PM(n)) size and O(log n log logn) depth, where PM(n)
is the size complexity of O(log n) depth polynomial multiplication.

Proof. Without loss of generality, we can assume that n is a power of two as
explained in Aho, Hopcroft, and Ullman [1]; in particular, we let n = 2m for some
integer m. Let f(i) = dm(1 − (2/3)i−1)e; now we can define a sequence of values
by di = 2

f(i). Note that d1 = 1. Letting p(x) = anx
n−1 + p′(x), then a−1n is the

reciprocal of the degree 0 polynomial that serves as the base of our algorithm.

The order of the iteration formula that we use at stage i is ki = 2
f(i+1)−f(i),

and it is easy to show that f(i+ 1)− f(i) ≤ (m/3) (2/3)i−1 + 1. Substituting actual
values for di and ki in the complexity bounds, stage i takes size O(n log n) and depth
O(log n). The number of iterations is O(log logn) (this is easy to see — it can be
verified by solving m(1 − (2/3)i−1) = m − 1), so the total size of all stages of this
algorithm is O(n log n log logn), and the total depth is O(log n log log n).

However, the algorithm that was just described is not quite what we use. If we
take the first n/ log2 n coefficients of p(x) and find the reciprocal of the polynomial
defined by these coefficients, then letting n′ = n/ log2 n the previously mentioned
algorithm takes size O(n′ logn′ log logn′) = O(n) and depth O(log n log logn). This
is part A of our polynomial reciprocal algorithm.

Part B is a series of second-order iterations (using the result of part A as an
initial estimate), and the required number of stages is O(log logn). Part B is easily
seen to have size O(PM(n)) and depth O(log n log logn). The total complexity of our
polynomial reciprocation algorithm is the sum of parts A and B, so the total size is
O(PM(n)), and the total depth is O(log n log logn).

4. Calculating integer powers. At the heart of our circuit for integer recipro-
cals is an improved modular powering algorithm based on previous results of Reif [9],
and Shankar and Ramachandran [12]. Both previous algorithms use divide and con-
quer (by Discrete Fourier Transform) to work on powering problems with smaller
numbers in parallel. For our division circuit, we need a circuit for mth order New-
ton iteration of an n bit number that has size O(nmO(1)(logn)O(1)). Unfortunately,
the powering algorithm in Reif [9], has size that is quadratic in n, and the circuit of

6 J. H. REIF AND S. R. TATE

Shankar and Ramachandran [12], though it improves the size bounds, also has size
that grows too fast in n for our intended application.
The divide-and-conquer approach of Shankar and Ramachandran [12], reduces

the number of bits at each stage, but the power remains the same throughout. In
our algorithm, we reduce both the number of bits and the power at each stage. Note
that to raise an n bit number x to the mth power, where m is a perfect square, we
can first raise x to the

√
mth power, and then raise this result to the

√
mth power.

Unfortunately, m is often not a perfect square, so let the first power be p1 = b√mc.
Next, see if p1(p1+1) ≤ m, and if it is, the second power we take will be p2 = p1+1;
if p1(p1 + 1) > m, then the second power will be just p2 = p1. The number x is first
raised to the p1th power, and this result is then raised to the p2th power; the final
result is xp1p2 . Now since p1p2 will usually not be m, we need to calculate an error
term e = m− p1p2. If we take xe and multiply by the preceding result, the result is
the desired answer of xm. A simple calculation shows that e <

√
m, so the original

powering problem has been reduced to three smaller powerings, each of size ≈ √m.
Note that the calculation of xp1p2 can happen in parallel with the calculation of xe,
so the depth is only that of two smaller powerings (not three).
By reducing powers in this way and reducing the number of bits of each subprob-

lem with discrete Fourier transforms, the size of the problem is reduced very quickly.
For the depth bounds to work out as we needed, it was discovered that the number
of bits should decrease faster than the powers. To achieve this, the power is reduced
only half as often as the number of bits. We will consider a stage of reducing both
power and bits followed by a second stage of reducing only the number of bits as a
single level in our circuit. Notice that the stage of reducing only the number of bits
is exactly the circuit of Shankar and Ramachandran.
The powering algorithm can be found in pseudocode in Fig. 1. The recursive call

to MODPOWERSR actually does a stage of the Shankar and Ramachandran circuit
before recursively calling MODPOWER.
As shown in Reif [9], (also see Shankar and Ramachandran [12]), there will be no

error with this algorithm as long as 2m(l+1+logk) ≤ k−1, which is satisfied whenever
m ≥ 32 and n > m2. A simple check shows that at all levels of our algorithm, these
inequalities hold.
Theorem 4.1. The circuit that calculates MODPOWER(·,m, n) with the con-

straint m ≤ √n has size O(nm4 logn log logn), and depth O(log n+ logm log logm);
furthermore, the circuit is logspace constructible.
Proof. We will use the notation S(n,m) and T (n,m) to denote the size and

depth, respectively, of taking the mth power of an n bit number modulo 2n+1 using
our MODPOWER algorithm. The MODPOWER algorithm deals only with integer
values, and consequently, floors and ceilings are often taken. These are analyzed by
repeatedly applying the following inequality — when bounding a product such as
dmedne, note that

dmedne < (m+ 1)(n+ 1) < mn
(
1 +

1

m
+
1

n
+
1

mn

)
.(4)

If there is a constant lower bound for m and n, then dmedne can be bounded by
dmedne < cmn for some constant c (in many cases below, we actually bound the
constant c).
We first derive a recurrence equation for the size of the MODPOWER circuit. In

the pseudocode, lines marked with an asterisk (*) take no size or depth in the circuit

OPTIMAL SIZE INTEGER DIVISION CIRCUITS 7

MODPOWER(x,m, n) /* Calculate xm mod 2n + 1 */
if m < 32 then

(1) Calculate using Schönhage-Strassen multiplication algorithm.
else

(*) k ← d√nme
(*) l← bn

k
c

(*) p1 ← b√mc
(*) if p1(p1 + 1) ≤ m then
(*) p2 ← p1 + 1
(*) else
(*) p2 ← p1
(*) fi
(*) e← m− p1p2

In parallel do part1, part2
part1:

(2) t← MPMACRO(x, e)
part2:

(3) y ← MPMACRO(x, p1)
(4) z ← MPMACRO(y, p2)

od
(5) MODPOWER ← zt mod 2n + 1

fi

y′ ← MPMACRO(x′,m′) /* Uses k, l, and n from above */
y′ ← x′

(1) Divide y′ into k blocks of l bits each, such that y′ =
k−1∑
i=0

yi2
il and

for all i, 0 ≤ yi < 2l
(2) (y0, y1, y2, · · · , yk−1)← (y0, 21y1, 22y2, · · · , 2k−1yk−1) mod 2k + 1
(3) (y0, y1, y2, · · · , yk−1)← DFTk(y0, y1, y2, · · · , yk−1) mod 2k + 1

In parallel for i = 0, 1, · · · , k − 1 do
(4) yi ← MODPOWER SR(yi,m

′, k) /* Uses ([12]) */
od

(5) (y0, y1, y2, · · · , yk−1)← DFT−1k (y0, y1, y2, · · · , yk−1) mod 2k + 1
(6) (y0, y1, y2, · · · , yk−1)← (y0, 2−1y1, 2−2y2, · · · , 2−(k−1)yk−1) mod 2k + 1
(7) y′ ← y0 + y12

l + y22
2l + · · ·+ yk−12(k−1)l mod 2n + 1
Fig. 1. Pseudocode for MODPOWER.

— they are calculated when the circuit is constructed. Ignoring the case of line (1)
for now, we see that all lines other than those calling MPMACRO take total size
O(M(n)) and total depth O(log n).

Deriving the size of MPMACRO can be done as follows. Assuming that m > 32
(so there is at least one level of recursion), let k1 = d√nm e be the k from MOD-
POWER, and let k2 =

⌈
2
√
k1m′

⌉
be the k from the application of the Shankar and

Ramachandran circuit. All steps except line (4) are easily done in size O(k21 log k1).
Line (4) includes a stage of the Shankar and Ramachandran circuit as described in

8 J. H. REIF AND S. R. TATE

the text preceding the theorem. For each i, the size of this reduction is bounded by
k2S(k2,m

′) + ck22 log k2 for some constant c. As there are k1 different values of i for
line (4), the total size of MPMACRO is bounded by k1k2S(k2,m

′) + ck1k22 log k2.
Noting that m′ ≤ dm1/2e and that MPMACRO is called three times, we get the

following recurrence equation for the size of MODPOWER:

S(n,m) =

{
c1M(n) if m ≤ 32,
3k1k2S(k2,

⌈
m1/2

⌉
) + c2k1k

2
2 log k2 + c3M(n) otherwise.

The claim is that for some constant c, S(n,m) ≤ cnm4 logn log logn satisfies this
for all m ≤ √n. For m ≤ 32, this is obviously true.
For m > 32 but

√
m ≤ 32, the recursive cost is given by the top line of the

recurrence equation. Therefore, the total size is bounded by 3k1c1M(k1)+c2k1 log k1+
c3M(n). But k1 < n and 3c1k

2
1 < c4mn for some constant c4, so this is bounded by

(c1 + c3)M(n) + c2n logn — and it follows that the size claim holds.
For
√
m > 32, we need to look more closely at k1 and k2. Expanding k2, we see

that k2 =
⌈
2 (d√nm e d√m e)1/2

⌉
. Using the technique above for bounding products

of ceilings, we bound k2 <
⌈
2.04n1/4m1/2

⌉
. Using the same method, we see that

k1k2 < 2.05n
3/4m. Using these facts, if

√
m > 32, then

S(n,m) ≤ 6.15n3/4mS(
⌈
2.04n1/4m1/2

⌉
,
⌈
m1/2

⌉
) + c5nm

3/2 logn+ c3M(n).

Using our claim on the right-hand side and repeatedly using the bound from equa-
tion (4) for bounding products of ceilings, the size claim can be proved.
The depth of MPMACRO is even easier to compute than the size. The depth

of all nonrecursion lines is O(log k1), and there is a single recursion for a total depth
bound of T (k2,m

′) + c log k1.
Noting that MPMACRO gets called twice sequentially (lines (4) and (5)), the

total depth of MODPOWER is bounded by 2T (k2,m
′) + c logn. Using the bounding

equations calculated above, the recurrence equations for the depth are

T (n,m) =

{
c1 logn if m ≤ 32,
2T (
⌈
2.04n1/4m1/2

⌉
,
⌈
m1/2

⌉
) + c2 logn otherwise.

Our claim is that for some constant c, T (n,m) ≤ c(logn+logm log logm) satisfies
the above equation. Again, if m ≤ 32, there is nothing to prove.
If m > 32 but

√
m ≤ 32, then there is just the one recursive call as in the

size analysis. Since log k2 < logn, the recurrence equation for the depth becomes
T (n,m) ≤ (2+c2) log n— therefore, setting c = 2+c2 is sufficient to prove the claim.
If
√
m > 32, it is important to note the following two inequalities:

log
⌈
2.04n1/4m1/2

⌉
< 1
4 logn+

1
2 logm+ 1.2,

log
⌈
m1/2

⌉
log log

⌈
m1/2

⌉
< 1
2 logm log logm+ 0.06 log logm− 0.48 logm− 0.05.

Using these values to put the claim in the right-hand side of the recurrence equations
results in a proof that the claim holds for c = 5c2.
As for the circuit being logspace constructible, it should be noted that all calcu-

lations made in the construction of the circuit (the lines marked with (*) in Fig. 1)

OPTIMAL SIZE INTEGER DIVISION CIRCUITS 9

deal with numbers that are O(log n) bits long. In other words, these calculations only
need to be done in space linear in the length of the numbers used — this is, of course,
easily done.
Corollary 4.2. MODPOWER can compute xm, where x is an n bit number

and m ≤ √n, in size O(nm5 logn log logn), and depth O(log n + logm log logm).
This circuit is also logspace constructible.
Proof. Simply use the modular powering algorithm of Theorem 4.1 to calculate

xm mod 2nm + 1. This ring is large enough to hold the exact answer, so the modular
result will be the same as the exact result.

5. High-order iteration for integer division. The following definition is use-
ful when describing the amount of error present in an approximation.
Definition. An approximation x̃ to a value x is said to be accurate to c bits if

|x− x̃| ≤ 2−c.
Note that this definition is the intuitive definition of “accurate to c bits in the

fractional part.” The reciprocal problem is that given a value x, we need to find
the value y = 1/x to within a certain error bound. We will scale the input so that
1
2 < x ≤ 1, which has no effect on the problem — the result will simply be scaled
back at the end. The complexity is also not affected since the scaling can be done by
powers of two (which can be done by bit shifting). If the scaled value of x is accurate
to n bits, then we want y accurate to n bits.
Newton iteration is a general method of refining a guess to the exact answer of

a problem of the form “find x such that f(x) = 0” for some given function f . The
second-order Newton iteration formula for finding reciprocals has been known and
used for quite some time (see, for example, [5]). What we use in this paper are
Newton iterations of higher degree. In general, a kth order Newton iteration for the
reciprocal problem is given by

yi+1 = yi

k−1∑
j=0

(1 − xyi)j ,

where the values yi are the approximations to y.
In the following error analysis, let εy,i be the difference between y and the ap-

proximation yi at step i, so yi = y − εy,i.
Theorem 5.1. If the error at step i is εy,i, then after applying a kth order

Newton iteration, the error at step i+ 1 satisfies the inequality |εy,i+1| ≤ |εy,i|k.
Proof. Rewriting yi as y − εy,i, the Newton sum can be rewritten:

yi+1 = (y − εy,i)
k−1∑
j=0

(1− x(y − εy,i))j = (y − εy,i)
k−1∑
j=0

(xεy,i)
j

since xy = 1. Further simplifications give

yi+1 = y

k−1∑
j=0

(xεy,i)
j − εy,i

k−1∑
j=0

(xεy,i)
j

= y +

k−2∑
j=0

xjεj+1y,i −
k−1∑
j=0

xjεj+1y,i

= y − xk−1εky,i.

10 J. H. REIF AND S. R. TATE

Since x ≤ 1, this implies that |εy,i+1| ≤ |εy,i|k.
In our algorithm we will use only iterations of even degree because of the nice

ordering properties of even degree approximations. The following obvious corollary
shows the relationship between yi+1 and y.
Corollary 5.2. If k is even, then after applying a kth degree Newton iteration

at step i, yi+1 ≤ y.
In the discussion above, we assumed that calculations were performed with all the

bits of x (i.e., x has infinite precision). A natural question to ask is how many bits
of x we really need to consider to achieve the desired error bound of |εy,i+1| ≤ |εy,i|k.
We answer this question in the remainder of this section.
First, let us introduce some more notation. We will be taking only the most

significant bits of x and throwing away the least significant bits. The truncated value
is called x̃, and ỹ = 1/x̃. It is trivial to see that x̃ ≤ x, so ỹ ≥ y. Let εx̃ = x− x̃, and
εỹ = ỹ − y.
Lemma 5.3. If |εy,i| ≤ c ≤ 1

4 for some value c, and can insure that εỹ ≤ ck, then
performing the kth order iteration (k even) using ỹ will result in |εy,i+1| ≤ ck.
Proof. It is important to note that we are doing the exact Newton iteration for

ỹ. There are three cases to consider, one for each possible ordering of y, ỹ, and yi.
Case 1. y ≤ ỹ < yi. As we noted in the preceding corollary, after performing

the iteration yi+1 ≤ ỹ. Since ỹ − y ≤ ck and ỹ − yi+1 ≤ |εy,i|k ≤ ck, it follows that
|y − yi+1| ≤ ck.
Case 2. y ≤ yi ≤ ỹ. After the Newton iteration the order must be y ≤ yi+1 ≤ ỹ,

and since ỹ − y ≤ ck, then |y − yi+1| ≤ ck.
Case 3. yi < y ≤ ỹ. After the Newton iteration either y ≤ yi+1 ≤ ỹ (and

|y−yi+1| ≤ ck as in Case 2), or yi+1 < y ≤ ỹ. Considering the latter ordering, ỹ−yi =
εy,i + εỹ, so ỹ − yi+1 ≤ (εy,i + εỹ)k and y − yi+1 ≤ (εy,i + εỹ)k − εỹ. Furthermore,

(εy,i + εỹ)
k − εỹ =

k∑
j=0

(
k
j

)
εjỹε
k−j
y,i − εỹ

= εky,i + εỹ


 k∑
j=1

(
k
j

)
εj−1ỹ εk−jy,i − 1


 .

Now look at the sum

k∑
j=1

(
k
j

)
εk−jy,i ε

j−1
ỹ ≤

k∑
j=1

(
k
j

)
ck−j(ck)j−1

=
k∑
j=1

(
k
j

)
cj(k−1)

< ck−1
k∑
j=1

(
k
j

)
≤ 2−2(k−1)(2k − 1)
= 2−k+2 − 2−2(k−1)
≤ 1 for all k ≥ 1.

This implies that y − yi+1 ≤ εky,i ≤ ck, and |y − yi+1| ≤ ck.
The following theorem sums up the point of the entire section.

OPTIMAL SIZE INTEGER DIVISION CIRCUITS 11

Theorem 5.4. If yi is accurate to p bits with p ≥ 2, then applying a kth order
Newton iteration (where k is even) using the first kp + 2 bits of x results in yi+1
accurate to kp bits.

Proof. yi is accurate to p ≥ 2 bits means that |εy,i| ≤ 2−p ≤ 1
4 . Let c = 2

−p and
note that εx̃ ≤ 2−(kp+2) = 1

4c
k. Now look at εỹ.

εỹ =
1

x̃
− 1
x
=
x− x̃
x̃x

=
x− (x − εx̃)

x̃x
=
εx̃

x̃x
.

Since x ≥ x̃ ≥ 1
2 , we know that εỹ ≤ 4εx̃ ≤ ck. Now Lemma 5.3 directly applies to

give |εy,i+1| ≤ ck = 2−kp, so yi+1 is accurate to kp bits.
6. The complexity of each step. In this section we derive size and depth

bounds for refining a p bit approximation to pk bits. As seen in the previous section,
a kth degree Newton iteration (assume k is even from here on) on a p bit approximation
yields a new approximation of at least pk bits when the first pk+2 bits of x are used.
Therefore we first determine the complexity of a kth order Newton iteration, using
pk bits, then see what happens when two more bits are used.

To calculate the required approximations, we use the new method of powering
introduced in § 4 to obtain the following results.
Theorem 6.1. The kth order Newton iteration of a p bit number (using pk bit

calculations and giving a pk bit result) can be computed by a logspace uniform circuit
family of size O(pk7 log pk log log pk), and depth O(log p+ log k log log k).

Proof. Looking at the Newton iteration formula of § 5, we first need to calculate
u = 1 − xyi. This can easily be done in O(M(pk)) size and O(log pk) depth. Next,
we need to calculate ui for 0 ≤ i < k, which is done by the circuit of § 4. The powers
of u are then all added together with size O(pk2) and depth O(log pk), and the final
multiplication by yi is performed. Clearly, the cost of performing the k powerings
dominates the entire circuit, so the total size is O(pk7 log pk log log pk), and the depth
is O(log pk + log k log log k) = O(log p+ log k log log k).

It is important to note that the summation in the Newton iteration formula is a
simple truncated power series and can be factored in exactly the same manner as the
reciprocal power series in Melhorn and Preparata [7] and Shankar and Ramachan-
dran [12]. After such a factoring, the largest power that needs to be taken is kε

for some constant ε > 0, and the resulting circuit has size O(pk1+6ε log pk log log pk)
while the depth remains essentially unchanged. Setting ε = 1

6 , we get the following
corollary.

Corollary 6.2. The kth order Newton iteration of a p bit number (using
pk bit calculations) can be calculated by a logspace uniform circuit family of size
O(pk2 log pk log log pk) and depth O(log p+ log k log log k).

The calculations that follow do not guarantee that k is an integer. In such a case,
we perform an order dke Newton iteration, which will produce an approximation
accurate to at least pk bits. Adding one or two to k, if needed to take the ceiling
and make it even, obviously does not affect the asymptotic bounds. Similarly, doing
calculations with pk+2 bits does not affect the asymptotic bounds. From these facts,
Corollary 6.2 and Theorem 5.4, we get the following corollary.

Corollary 6.3. An approximation accurate to pk bits can be obtained from a
p bit approximation by a logspace uniform circuit of size O(pk2 log pk log log pk) and
depth O(log p+ log k log log k).

12 J. H. REIF AND S. R. TATE

7. The integer reciprocal algorithm. In this section, we get to the heart of
the reciprocal algorithm. As mentioned in the overview of the algorithm, in part A
of our algorithm we choose the highest degree Newton approximation possible, while
staying within given size bounds. Let pi denote the number of bits of accuracy at
stage i, and define a sequence of accuracies by pi = n

1−(1/2)i ; note that p0 = 1 (only
one bit needs to be known initially).
Theorem 7.1. Part A of the reciprocal algorithm calculates the reciprocal of x

accurate to n/(logn)2 bits in O(n) size and O(log n log logn) depth.
Proof. From the formulas for pi and pi+1, we can easily solve to see what degree

Newton iteration is needed at stage i — call this ki:

ki =
pi+1

pi
= n1−(1/2)

i+1−(1−(1/2)i) = n(1/2)
i+1

.

Now we can derive the size complexity of step i to be bounded by

cpik
2
i log piki log log piki ≤ cn1−(1/2)

i

n(1/2)
i

logn log log n
≤ cn logn log logn.

If we let r = log logn, then we see that pr =
n
2 , so we know half of the bits. A single

second-order Newton iteration extends this result to the full answer. Therefore, the
total size for all r stages is O(n log n(log logn)2).
Again (as in the polynomial reciprocal problem), we simply do not use all n bits

for part A. If we let N = n/(logn)2, then performing the above algorithm on an N bit
number produces a result accurate to N bits in size O(N logN(log logN)2) = O(n).
The depth calculation is slightly more subtle. Looking at stage i, the depth of

this stage is bounded by

c log pi + c log ki log log ki ≤ c
(
1
2

)i
logn log logn+ c logn.

Summing over all r stages, and noting that
∑(

1
2

)i
is bounded by a constant (it

is bounded by 2, to be exact), the total depth is O(log n log logn). For the depth,
decreasing the number of bits to N has no substantial effect, so the total depth is the
same.
Now we look at part B of the reciprocal algorithm, namely, using second-order

Newton iterations to extend the approximation of part A to n bits.
Theorem 7.2. Part B of the reciprocal algorithm produces the reciprocal accurate

to n bits from the result of part A in size O(M(n)) and depth O(log n log log n).
Proof. If n1 bits are known initially, then after applying m second-order Newton

iterations, the approximation is extended to n2 = n12
m bits. Using the number of

bits produced by part A (Theorem 7.1) as n1, letting n2 = n, and solving for m, we
get m = 2 log logn.
The size of second-order Newton iteration on ni bits is less than cM(ni) for some

constant c. The number of bits in the last stage is n, and for simplicity of notation we
number the stages from the end with n0 = n and ni = ni−1/2 = n/2i. The size of stage
i is then less than cM(n/2i), which is less than (c/2i)M(n) since M(n) must be at
least linear. The sum over all stages is now easily evaluated as

∑
cM(ni) ≤ 2cM(n),

so the total size of part B is O(M(n)). The depth of each stage is O(log n), so the
total depth of part B is O(log n log logn).
Now we are ready to put both parts together and state size and depth bounds for

the entire reciprocal circuit.

OPTIMAL SIZE INTEGER DIVISION CIRCUITS 13

Theorem 7.3. The reciprocal of an n bit number can be calculated to n-bit
precision by a logspace uniform circuit in size O(M(n)) and depth O(log n log logn).

Theorem 7.3 is immediately applicable to other problems whose complexity is
dominated by that of division. A rational function f is any function that can be
written in the form f(x) = p(x)/q(x), where p and q are fixed degree polynomials with
coefficients that can be represented in fixed-point binary with O(n) bits. In a recent
paper, Alt [2] shows how multiplication is simultaneous size and depth equivalent to
the evaluation of polynomials; therefore, in particular, the evaluation of p(x) and q(x)
above can be reduced to multiplication. These results can be combined with a single
division to produce f(x), which gives rise to the following corollary.

Corollary 7.4. Any rational function can be evaluated in O(log n log logn)
depth and O(M(n)) size.

8. Conclusion and open problems. The important contribution of this paper
is that the size bounds for multiplication are matched by a division circuit with depth
less than Ω(log2 n); in fact, we match the best known depth bounds for logspace
uniform reciprocal circuits while obtaining optimal size. Note that if the size of
multiplication (call this M(n)) is reduced, then using the new multiplication circuit
in part B of our algorithm reduces the size of our division circuit to O(M(n)) also.

There are still interesting questions regarding the use of high-order Newton it-
erations. We know that all rational functions can be evaluated in identical bounds
(by Corollary 7.4). This gives strong evidence that other algebraic problems can be
solved using this technique.

An open question remaining in integer division is reducing the depth of the
logspace uniform circuits. This seems to be a very hard problem requiring a different
approach entirely.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] H. Alt, Comparing the combinatorial complexities of arithmetic functions, J. Assoc. Comput.
Mach., 35 (1988), pp. 447–460.

[3] P. W. Beame, S. A. Cook, and H. J. Hoover, Log depth circuits for division and related
problems, SIAM J. Comput., 15 (1986), pp. 994–1003.

[4] A. Borodin, On relating time and space to size and depth, SIAM J. Comput., 6 (1977),
pp. 733–744.

[5] S. A. Cook, On The Minimum Computation Time of Functions, Ph.D. thesis, Harvard Uni-
versity, Cambridge, MA, 1966.

[6] J. Hastad and T. Leighton, Division in O(logn) depth using O(n1+ε) processors, unpub-
lished note, 1986.

[7] K. Melhorn and F. P. Preparata, Area-time optimal division for T = Ω((logn)1+ε), in Sym-
posium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science
210, Springer-Verlag, New York, 1986, pp. 341–352.

[8] J. H. Reif, Logarithmic depth circuits for algebraic functions, in Proc. 24th Annual IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society, Washington,
D.C., 1983, pp. 138–145.

[9] , Logarithmic depth circuits for algebraic functions, SIAM J. Comput., 15 (1986),
pp. 231–241.

[10] J. H. Reif and S. R. Tate, Efficient parallel integer division by high order newton iteration,
preliminary draft, 1988.

[11] A. Schönhage and V. Strassen, Schnelle multiplikation grosser zahlen, Computing, 7 (1971),
pp. 281–292.

14 J. H. REIF AND S. R. TATE

[12] N. Shankar and V. Ramachandran, Efficient parallel circuits and algorithms for division,
Inform. Process. Lett, 29 (1988), pp. 307–313.

[13] J. F. Traub, Iterative Methods for The Solution of Equations, Chelsea, New York, 1964.

