
Part IV

Fundamental Parallel

Algebraic Algorithms

1

1

Newton Iteration and Integer
Division

Stephen R. Tate

Department of Computer Science

University of North Texas

P.O. Box 13886

Denton, TX 76203–6886

srt@cs.unt.edu

3

4 Chapter 1. Newton Iteration and Integer Division

1.1
Introduction

At the heart of all numerical computations are the basic operations of

addition, subtraction, multiplication, and division (also, to a lesser extent,

more complex operations such as powering, finding square roots, computing

logarithms, etc.). It is vital to study these problems from the standpoint of

parallel algorithms, because even in commonly used single processor machines

the basic operations are done in parallel (by parallel paths through low-level

logic circuits).

Early in school, a student learns how to perform the functions of ad-

dition, subtraction, multiplication, and division. In fact, these topics are

usually presented in this order due to the increasing difficulty of the opera-

tions. Studies in parallel algorithms support the sense of difficulty assigned

by our elementary school teachers—optimal algorithms exist for addition and

subtraction, while good algorithms exist for multiplication (even the best of

which is not known to be optimal), and division seems to be even harder. For

more information on the operations of addition, subtraction, and multiplica-

tion, see the references section at the end of this chapter.

The common computational model used when examining arithmetic

problems is the bounded fan-in Boolean circuit. A bounded fan-in circuit

is simply a directed acyclic graph with each node having bounded in-degree.

There are two sets of special nodes: the input nodes (which have in-degree

zero) and the output nodes (which have out-degree zero). Furthermore, since

the circuits we consider are Boolean, each non-input node is labeled with a

Boolean function (AND, OR, or NOT). By applying Boolean values to the

input nodes and computing all nodes as the labeled function from their pre-

decessor values, circuits can be regarded as computing functions. To compute

a function, circuit families are considered (one circuit for each possible in-

put size). The size of a circuit family is a function S(n) that gives (for each

n ≥ 1) the number of nodes in the circuit for inputs of length n. The depth
of a circuit family is a function D(n) that gives (for each n ≥ 1) the length
of the longest path from an input node to an output node in the circuit for

length n inputs.

In this chapter, the parallel complexity of division is compared with

the complexity of the other elementary operations. The problem of integer

division is defined to be a function that takes a pair of input values (y, x),

and produces the pair of values (q, r) such that y = qx + r, where 0 ≤ r < x
(i.e., a quotient and a remainder). Reduction of division to multiplication

1.1. Introduction 5

via Newton approximation is shown to provide good sequential results, but

these results do not translate well to parallel algorithms. In this chapter, we

describe a parallel algorithm due to Reif and Tate [14] which is a modified

version of Newton approximation (called high order Newton approximation

for reasons that will become clear). This algorithm obtains parallel results

that are almost optimal. On the way to the results for division, it will be

discovered that finding limited integer powers is vital for division, so ways of

accomplishing this are discussed.

As is standard practice when comparing the complexity of algorithms,

the focus of this chapter will be on reductions to other problems. It is sufficient

to consider the problem of finding reciprocals in place of division. As we are

considering only integer operations, the idea of a reciprocal is not clear—in

general, the real reciprocal of an integer will not be an integer. Therefore,

given an n-bit input integer x, the integer reciprocal is defined as the value⌊
22n

x

⌋
.

Notice that this is simply the shifted binary fixed point approximation to the

real reciprocal; it should be obvious how the reciprocal can be used with a

constant number of multiplications to solve the division problem.

The notation ≤sd denotes a constant size and depth reduction; in other
words, if f and g are two functions, then f ≤sd g if, given any circuit family
computing g in size S(n) and depth D(n), a circuit family can be constructed

which computes f in size O(S(n)) and depth O(D(n)). Letting SQ denote

the function that squares an n-bit integer and MULT denote the problem of

multiplying two n-bit integers, it is easy to see that SQ ≤sd MULT. It is also
true, but not quite as obvious, that MULT ≤sd SQ since xy = 1

2 [(x + y)
2 −

x2−y2] (addition is easily accomplished, and the multiplication by 12 is simply
a binary shift by one bit). The notation ≡sd is used for two problems that are
constant size-depth reducible to each other, so SQ ≡sd MULT as just shown.

Re-examining our rather arbitrary hierarchy of difficulty for arithmetic

problems, a good candidate for a reduction of division would be multiplication.

In fact, letting REC denote the integer reciprocal problem and using the new

notation, it can be shown that SQ ≤sd REC by

x2 =
1

1
x
− 1
x+1

− x.1 (1.1)

1This is actually an abuse of notation, since equation (1.1) uses real reciprocals instead of

the defined integer reciprocal; however, it is not hard to see how the integer reciprocal can

be used to approximate real reciprocals in the calculation of equation (1.1).

6 Chapter 1. Newton Iteration and Integer Division

Noting that the ≤sd relation is transitive, this also means that MULT ≤sd
REC, so finding reciprocals is at least as hard (in the sense of constant size-

depth reductions) as multiplication. This verifies the fact that multiplication

is a good candidate when trying to reduce division.

Throughout this chapter, the notation M(n) will be used to represent

the smallest size required by any circuit family that multiplies two n-bit

numbers in O(log n) depth. As there are no known optimal algorithms for

multiplication at this time, the exact value of M(n) is unknown; however,

the value is easily lower-bounded by M(n) = Ω(n) and upper-bounded by

M(n) = O(n logn log logn) (the upper bound is due to an algorithm by

Schönhage and Strassen—see the references at the end of the chapter for

more information). It is assumed that M(n) satisfies the equation

M(cn) ≤ cM(n) (1.2)

for all positive c ≤ 1. Almost all complexity measures that are Ω(n) satisfy
this bound, so the assumption is not too great.

In the text that follows, the notation RECIPROCAL(x, n) refers to the

function of integer reciprocal, without reference to a particular algorithm;

the arguments x and n denote the input value and the size of the input, re-

spectively. When referring to specific algorithms that compute the reciprocal

function, the notation used will be RECIP1(x, n), RECIP2(x, n), etc.

1.2
Newton Approximation

Newton approximation is a tool commonly used by numerical analysts to

find the zeros of a function. In numerical analysis terms, Newton approxima-

tion (in general) has quadratic convergence—what this means to the division

problem will become clear shortly.

Consider a differentiable function f(x) that has first derivative f ′(x)
and has a zero at x0 (so f(x0) = 0). Assuming that f

′(x) is non-zero in a
reasonable neighborhood of x0, we can make an initial guess for x0 (call the

initial guess y1) and use the slope f
′(y1) to estimate how far y1 is from the zero.

This produces a new estimate for x0 (call it y2) and the process can be repeated

producing a sequence of estimates y1, y2, y3, . . . that converges to x0 for all

well-behaved functions and good initial approximations. In mathematical

terms, this becomes

yi+1 = yi − f(yi)
f ′(yi)

. (1.3)

1.2. Newton Approximation 7

The convergence rate for the general case is beyond the scope of interest of

this chapter—the interested reader can consult any introductory numerical

analysis text.

Consider the function f(y) = 1 − 1
xy
. Obviously, 1

x
is a zero of f , and

the derivative f ′(y) = 1
xy2 is non-zero for all y 6= 0. Using this function f ,

equation (1.3) gives a sequence defined by

yi+1 = 2yi − xy2i . (1.4)

This equation will take a good initial estimate and converge to 1
x
. A word

of warning is appropriate here—notice how easily we slipped into solving the

problem of real reciprocals instead of integer reciprocals. Fortunately, the

problem is not too great—as was noted before, the integer reciprocal is sim-

ply a scaled representation of the fixed point binary approximation to the real

reciprocal. Re-writing the above equation with this scaling in mind, the fol-

lowing equation generates a sequence that converges to the integer reciprocal

using only integer operations.

yi+1 =

⌊
22n+1yi − xy2i

22n

⌋
(1.5)

This formula works quite well, and direct implementation yields a circuit

that computes integer reciprocals in size O(M(n) log n) and depth O(log2 n).

The logn multiplier in the size comes from the fact that Θ(logn) iterations

of equation (1.5) are needed, each of which requires a multiplication of n bit

values.

Noticing that the approximation yi is very inaccurate in the early stages,

it seems pointless to do calculations with all the erroneous bits of yi. In fact,

this observation produces a new algorithm which removes the logn multiplier

from the size bound above; the algorithm that accomplishes this is shown in

figure 1.1, and proofs of correctness and complexity are given in theorem 1.1.

The approximation formula used in figure 1.1 looks different from that in

equation (1.5), but the only difference is due to the new scaling required by

having only n2 bits for yi.
2 The “for loop” in algorithm RECIP1 is also a

new addition; it is present to overcome errors induced by using fixed point

approximation to real numbers. The usefulness of this adjustment stage will

become apparent from the proof of theorem 1.1.

2One way to view this is that now the precision of the fixed point representation is changed

at each stage; at the smallest stage, the fractional precision is only ± 1
2
, but at the next

stage the precision is ± 1
4
, and then ± 1

16
,± 1
256
, . . .

8 Chapter 1. Newton Iteration and Integer Division

Algorithm RECIP1(x, n);

if n = 1

then begin

y ← 4;
end;

else begin

t← RECIP1(⌊ x
2n/2

⌋
, n2);

y ←
⌊
2
3
2
n+1t−xt2
2n

⌋
;

for i← 3 downto 0 do
if (x(y + 2i) ≤ 22n)
then begin

y ← y + 2i;
end;

end;

return (y);

end.

FIGURE 1.1

Algorithm RECIP1.

1.2. Newton Approximation 9

For the remainder of this section, as well as in sections 1.4 and 1.5, the

n-bit input x is assumed to satisfy 2n−1 ≤ x < 2n (i.e., the high-order bit is
set). The algorithms may be modified so they do not require this assumption

by simply shifting x (by bits) into the appropriate range, performing the

algorithms found in this chapter, and shifting the results back into the proper

range. The complexity of the shifting stages is negligible compared to the

complexity of the algorithms discussed. Similarly, it is assumed that n is a

power of 2.

THEOREM 1.1

Algorithm RECIP1 in figure 1.1 correctly computes the integer reciprocal

of x, and is realized with a circuit family of size O(M(n)) and depth

O(log2 n).

PROOF

The following proof of the correctness is rather tedious; this comes from

the fact that fixed point approximations to real numbers are used, so

small errors (from rounding or truncating) are introduced at various

points. A very simple way to get a feeling for why this method works is to

examine how the error of an approximation is affected by equation (1.4);

while this is not a proof that algorithm RECIP1 is correct, it does provide

insight that is useful if the following proof is found to be confusing.

To simplify notation, let r represent the value returned by RECIP1(x, n).

To prove the correctness of RECIP1, it is necessary to show that r =⌊
22n

x

⌋
; in other words, xr = 22n − s where 0 ≤ s < x. The proof is by

induction on n; the correct value for n = 1 is stated explicitly in the

algorithm.

Assume that the algorithm returns a correct value for inputs of size n2 .

Let t be the value of RECIP1(
⌊
x
2n/2

⌋
, n2) as in figure 1.1, and let d =

2
3
2n+1t − xt2. Also, denote the most significant n2 bits by x1 and the
least significant n2 bits by x0, so x = x12

n/2 + x0. The value d can now

be written as

d = 2
3
2n+1t− t2(x12n/2 + x0).

The value of interest in this proof is xr, so first we will find xd and then

bound the difference between this and xr.

xd = 22n+1x1t+ 2
3
2n+1x0t− t2(x12n/2 + x0)2

10 Chapter 1. Newton Iteration and Integer Division

Using the induction hypothesis (that x1t = 2
n − s′, where 0 ≤ s′ < x1),

this can be simplified to

xd = 23n − (2n/2s′ − tx0)2.
Dividing by 2n, the result is

xd

2n
= 22n − (s′ − tx0

2n/2
)2.

Noting that s′ and tx0
2n/2
are both positive and that the difference of these

two is squared, it is possible to bound(
s′ − tx0

2n/2

)2
≤ max

{
(s′)2,

(
tx0

2n/2

)2}
.

By the induction hypothesis, s′ < x1 < 2n/2, so (s′)2 < 2n/2x1 ≤ x.
Furthermore,

(
tx0

2n/2

)2
≤
(
2n/2x0
x1

)2
<
(
2n/2+1

)2
= 2n+2 ≤ 8x,

so (s′ − tx0
2n/2
)2 < 8x. In other words,

xd

2n
> 22n − 8x.

Now, considering the value y calculated by the Newton approximation

equation,

xy = x

⌊
d

2n

⌋
> x(

d

2n
− 1) = xd

2n
− x > 22n − 9x

The adjustment stage of RECIP1 will adjust the least significant four

bits of y to the correct value, as long as RECIPROCAL(x, n) − y ≤ 15
entering the adjustment stage. It has just been shown that, in fact,

RECIPROCAL(x, n) − y ≤ 9, so RECIP1 correctly returns the integer
reciprocal.

The complexity of the circuit is very straightforward to calculate. To

calculate the size, notice that RECIP1 performs only a constant num-

ber of multiplications and simpler operations on O(n) bit numbers in

addition to the recursive call. In other words, the recurrence

S(n) ≤ S(n
2
) + cM(n) (1.6)

1.3. Integer Powering 11

S(1) = 1

describes the size of the circuit for RECIP1. The solution to equa-

tion (1.6) is given by

S(n) ≤ c
logn∑
i=0

M(
n

2i
).

The earlier assumption that M(n) satisfies equation (1.2) implies that

M(n2i) ≤ 1
2iM(n), so the resulting size is S(n) = O(M(n)).

The depth of each level of recursion is bounded by O(log n), and since

there are logn stages, the total depth is bounded by O(log2 n). This is a

rather simplistic depth analysis, but closer examination shows that this

is the tightest upper bound possible.

1.3
Integer Powering

The seemingly unrelated problems of integer reciprocal and integer pow-

ering are actually very closely related. In fact, it has been shown by Beame,

Cook, and Hoover [3] that the two problems are equivalent with respect to

constant depth reductions.3 A survey of the research on integer division shows

that all known efficient reciprocal algorithms use powering as an integral part

(see the references for information on other reciprocal algorithms).

As an introduction to powering, consider a simple powering algorithm;

the problem is to raise an n-bit number x to the m-th power, where m ≤ n.
Now write m in its binary notation, so m = mblogmc2blogmc + · · · +m222 +
m12

1 +m02
0. An algorithm (called repeated squaring) that takes advantage

of the binary representation of m is shown in figure 1.2.

The complexity analysis of this algorithm is particularly easy, resulting

in a circuit family with size O(M(nm)) and depth O(log n logm). Note that

this is considerably better than simply multiplying x by itself m times which

takes size O(mM(nm)) and depth Θ(m logn).

With this algorithm in mind, consider the reciprocal algorithm of the

previous section; at first glance, RECIP1 doesn’t seem to take any powers

greater than squaring yi. However, if a more global view is invoked, this

squared term is again squared in the next stage, and repeatedly squared until

3A constant depth reduction is similar to the constant size and depth reduction mentioned

earlier in this chapter, except that the size can increase by a polynomial amount.

12 Chapter 1. Newton Iteration and Integer Division

Algorithm REPEATSQ(x,m);

{Consider m in its binary representation:
m = mblogmc2blogmc + · · ·+m222 +m121 +m020}

i← 0;
p← x;
y ← 1;
while i ≤ logn do begin
if mi = 1

then begin

y ← yp;
end;

p← p2;
end;

end.

FIGURE 1.2

Repeated squaring method of taking powers.

the end of the algorithm. In other words, the algorithm actually takes large

powers using the repeated squaring algorithm! An observant reader would

have noticed that the depth of the algorithm RECIP1 is the same as the depth

of the algorithm REPEATSQ (with m = n). Now it can be seen that this is

no coincidence—RECIP1 was actually performing operations almost identical

to REPEATSQ.

An interesting question now arises: Can reciprocals be computed in

depth smaller than Ω(log2 n) if there were an algorithm for computing pow-

ers in small depth? Indeed, this is the case (more information on this will

be presented in following sections); unfortunately, finding small depth cir-

cuits for powering seems to be as hard as looking at the reciprocal problem

directly. What follows is a description of a powering algorithm that only re-

quires O(log n log logn) depth (for m = n); the algorithm is rather confusing

to people who haven’t seen anything like it before. A good “warm-up” exercise

would be to read and understand the multiplication algorithm of Schönhage

and Strassen (see the references). The algorithm presented here consists of

two parts: reducing the size of the input number x, and reducing the power.

1.3. Integer Powering 13

1.3.1 Bit Reduction

Again, we wish to raise an n-bit number x to a power m, where m ≤ n.
The number x has at most d =

⌊
n
log b

⌋
+ 1 digits in base b notation and can

be written as

x = xd−1bd−1 + · · ·+ x2b2 + x1b+ x0. (1.7)

If an indeterminate z is substituted for the occurrences of b that are raised to

a power, then x can be represented by a polynomial p(z) = xd−1zd−1 + · · ·+
x2z

2 + x1z
1 + x0, where p(b) = x.

Operations with such polynomials mirror the same operations performed

on the numbers themselves, so for example, if x is represented by p(z) and y is

represented by q(z), then the product of the two polynomials has the property

that p(z)q(z)|z=b = p(b)q(b) = xy.4 The current interest is in powering, and
it can be noticed that if x is represented by p(z) and m is an integer, then

[p(z)]m|z=b = [p(b)]m = xm. Efficient polynomial arithmetic is made possible
by a domain change through Fourier transforms; we now see how this is done.

Returning to the original problem, let x be an n-bit number, where n is

a power of 2—say n = 2p. The input x can be broken into k = 2r blocks of

l = 2p−r bits each, so letting b = 2l, equation (1.7) becomes

x = xk−12l(k−1) + · · ·+ x222l + x12l + x0.

The polynomial representation of x (as described above) is therefore p(z) =

xk−1zk−1 + · · ·+ x2z2 + x1z + x0; notice that p(2l) = x.
To raise x to the mth power, simply find the polynomial [p(z)]m and

evaluate at z = 2l. Unfortunately, the polynomial [p(z)]m has degreem(k−1),
which is too large for an efficient powering algorithm (it is an interesting

exercise to follow the development of the powering algorithm using all terms

of [p(z)]m to see exactly where things go amiss).

Consider calculating [p(z)]m(mod zk − 1). When the value z = 2l is
inserted, the result is xm(mod 2n − 1); by padding the input with zeros and
increasing n to insure that 2n − 1 > xm, this method produces the exact
answer. Furthermore, polynomials modulo zk − 1 never have degree greater
than k − 1, so the problem of growing polynomial degrees has disappeared.
With this in mind, the subject of most of the remainder of this section will

be the problem of modular powering.

4The notation p(x)|x=a means the polynomial p(x) evaluated at x = a; in other words, p(a).
Similarly, p(z)q(z)|z=b means to multiply the polynomials p(z) and q(z), and evaluate the
resulting polynomial at z = b.

14 Chapter 1. Newton Iteration and Integer Division

Let b(z) = bm(k−1)zm(k−1) + · · ·+ b2z2 + b1z + b0 be the exact value of
[p(z)]m, and let d(z) = dk−1zk−1 + · · · + d1z + d0 be the reduction of b(z)
modulo zk − 1 so that d(z) has degree less than k. Since zk ≡ 1(mod zk − 1),
it is easy to see that for i = 0, 1, . . . , k − 1,

di =

m−1∑
j=0

bjk+i.

All bi with i > m(k − 1) are assumed to be zero. Let D = (d0, d1, . . . , dk−1)
and X = (x0, x1, . . . , xk−1) denote vectors of the coefficients of d(z) and p(z),
respectively. The following lemma demonstrates an efficient way of comput-

ing the modular power polynomial d(x) using Discrete Fourier Transforms

(DFTs).5

LEMMA 1

Let DFTk(X) = (t0, t1, . . . , tk−1). Then DFT−1k ((t
m
0 , t

m
1 , . . . , t

m
k−1)) = D.

PROOF

By the definition of the DFT,

ti =
k−1∑
j=0

xjω
ij = p(ωi)

for all i = 0, 1, . . . , k−1, where ω is a principal kth root of unity. Raising
each ti to the mth power gives

tmi = [p(ω
i)]m = [p(z)]m|z=ωi =

m(k−1)∑
j=0

bjω
ij =

m−1∑
p=0

k−1∑
q=0

bpk+qω
i(pk+q).

But ωi(pk+q) = (ωk)ipωiq = ωiq since ω is a kth root of unity, so

tmi =

m−1∑
p=0

k−1∑
q=0

bpk+qω
iq =

k−1∑
q=0

(
m−1∑
p=0

bpk+q

)
ωiq =

k−1∑
q=0

dqω
iq.

By the definition of the DFT, this is simply the ith term of DFTk(D). As

this holds for all i = 0, 1, . . . , k−1, then DFT−1k ((tm0 , tm1 , . . . , tmk−1)) = D.

5If the reader is unfamiliar with the Fourier transform or the Fast Fourier Transform algo-

rithm, an introductory level discussion can be found in (Aho et al., [1]).

1.3. Integer Powering 15

The Fourier transform of a k-vector (representing a degree k−1 polyno-
mial) requires a principal kth root of unity ω. The polynomials that represent

integers have integer coefficients, and to avoid doing computations over the

complex field, it is possible to use finite rings as the basis of our computation.

The ring of integers modulo 2k − 1 has a principal kth root of unity of ω = 2,
giving this ring the further nice property that multiplication by powers of ω

is easily accomplished by bit shifts. Since computations on each element of

X are now done modulo 2k − 1 it is clear how the original problem (powering
an n-bit number modulo 2n− 1) is reduced to smaller subproblems (powering
k-bit numbers modulo 2k−1). This reduction can be repeated until the size of
the subproblems is trivial. Furthermore, k−1(mod 2k − 1) exists by insuring
that k is a power of 2, so the inverse DFT is possible.

A problem arises from the fact that the previous discussion of power-

ing assumes that the exact values for the coefficients of [p(z)]m(mod zk − 1)
are known, and the previous paragraph refers to only finding the coefficients

modulo 2k − 1. The following lemma addresses this problem by showing how
large to make k to insure that the coefficients are uniquely represented in this

ring (i.e., the coefficients are less than 2k − 1).

LEMMA 2

The coefficients of [p(z)]m(mod zk − 1) are less than 2k − 1 if

2r − r(m − 1)− lm > 0 (1.8)

(where r, l, and m are defined in the preceding text).

PROOF

First, it is proved by induction that the coefficients of [p(z)]m(mod zk−1)
are less than or equal to km−1(2l − 1)m for m = 1, 2, The basis of
the induction is easy; simply let m = 1 and the claimed bound becomes

2l − 1. The coefficients of p(z) are all less than or equal to 2l − 1 since
each coefficient is l bits long.

Now assume the claim is true for m − 1 (that is, the coefficients of
[p(z)]m−1(mod zk − 1) are less than or equal to km−2(2l − 1)m−1). Let
the expansion of p(z) and [p(z)]m−1(mod zk − 1) be as follows:

p(z) = xk−1zk−1 + xk−2zk−2 + · · ·+ x2z2 + x1z + x0
[p(z)]m−1 = yk−1zk−1 + yk−2zk−2 + · · ·+ y2z2 + y1z + y0

16 Chapter 1. Newton Iteration and Integer Division

Notice that since zi ≡ zi(modk)(mod zk − 1),

[p(z)]m = [p(z)][p(z)]m−1 ≡
k−1∑
i=0


k−1∑
j=0

xjyi−j(mod k)


 zi(mod zk − 1).

Regardless of the particular values of i and j, it must be true that xj ≤
2l−1 and yi−j(modk) ≤ km−2(2l−1)m−1 (by the induction hypothesis),
so xjyi−j(modk) ≤ km−2(2l−1)m. Since there are k terms like this added
together for each coefficient of [p(z)]m(mod zk−1), each coefficient must
be less than or equal to km−1(2l − 1)m, and the proof by induction is
finished.

Returning to the lemma, condition (1.8) states that 2r > r(m−1)+ lm.
In other words, taking each side as an exponent, 2(2

r) > 2r(m−1)2lm, and
since k = 2r this implies that km−12lm < 2k. Loosening the inequality
slightly, this implies that (for m ≥ 1)

km−1(2l − 1)m < 2k − 1. (1.9)

The previous inductive proof showed the coefficients of [p(z)]m(mod zk−
1) must be less than or equal to the left hand side of inequality (1.9), so

each coefficient must also be less than 2k − 1, completing the proof of
the lemma.

As an example of the reduction technique just described, consider a

single stage of bit reduction as shown in figure 1.3. The value for k comes

from calculations involving lemma 2; lemma 3 shows how this works. Notice

the call on MODPOWER in REDUCE1—this is a recursive call that is left

unspecified for the moment. As it turns out, a second type of reduction will

be needed for efficient powering, and the recursive call (named MODPOWER

here) may be on a different type of reduction. Notice the new assumption

that m ≤ n 38 . This assumption simply makes the lemma easier to prove, and
will not affect the final powering result at all (in fact, it will become apparent

that this is the result of passing the assumption m ≤ n down through several
lemmas).

LEMMA 3

Let m ≥ 16 and m ≤ n 38 . Then assuming that MODPOWER(ti,m, k)
correctly returns tmi (mod 2

k − 1), the reduction REDUCE1 shown in fig-
ure 1.3 correctly returns xm(mod 2n − 1). Furthermore, if the call on

1.3. Integer Powering 17

Algorithm REDUCE1(x,m, n);

p← logn;
q ← dlogme;
r ← ⌈

p
2 +

2q
3

⌉
;

k ← 2r;
Divide x into k blocks of l = 2p−r bits each as (x0, x1, . . . , xk−1);
(t0, t1, . . . , tk−1)← DFTk(x0, x1, . . . , xk−1);
for all i = 0, 1, . . . , k − 1 pardo begin
ui ← MODPOWER(ti,m, k);

end;

(y0, y1, . . . , yk−1)← DFT−1k (u0, u1, . . . , uk−1);
y ← y0 + y12l + y222l + · · ·+ yk−12(k−1)l(mod 2n − 1);
return (y);

end.

FIGURE 1.3

Powering reduction style 1.

MODPOWER requires size S(m, k) and depth D(m, k), then REDUCE1

requires total size kS(m, k) + O(nm
4
3 logn) and total depth D(m, k) +

O(log n).

PROOF

The correctness of REDUCE1 follows directly from the previous discus-

sion with the important points being lemma 1 and lemma 2. The only

verification that needs to be done is that the condition (1.8) of lemma 2

holds; that is, that 2r − r(m− 1)− lm > 0. What follows is basically an
exercise in minimizing the function on the left hand side.

From figure 1.3, let r =
⌈
p
2 +

2q
3

⌉
. To avoid the ceiling function write r

as p2 +
2q
3 + ε, where ε is some value satisfying 0 ≤ ε < 1. Obviously, if

condition (1.8) holds for all ε in this interval, then the condition must

also hold with the ceiling. Substituting this value for r and letting

m = 2q and l = 2p−r, the left hand side of condition (1.8) becomes

f(p, q, ε) = 2
p
2+

2q
3 +ε −

(
p

2
+
2q

3
+ ε

)
(2q − 1)− 2 p2+ q3−ε.

18 Chapter 1. Newton Iteration and Integer Division

This formula is quite messy, but can be simplified greatly just by taking

the partial derivative with respect to ε (which will reveal a lot of useful

information).

∂f

∂ε
(p, q, ε) = 2

p
2+

q
3 ln 2

(
2ε+

q
3 + 2−ε

)
− (2q − 1)

This function is easily minimized for a given p and q (for an easy trick,

substitute t = 2ε and minimize with respect to t) when ε = − q6 . Sub-
stituting this value into ∂f

∂ε
, for any p and q the minimum value of the

partial derivative with respect to ε is

2
p
2+

q
2+1 ln 2− (2q − 1) . (1.10)

In terms of p and q, the assumption that m ≤ n 38 translates to q ≤ 3p
8

(or equivalently, that p ≥ 8q
3). We wish to show that equation (1.10) is

greater than zero for all valid p and q. For any given q, equation (1.10)

is minimum when p is at its minimum—in other words, when p = 8q
3 .

Making this substitution, equation (1.10) becomes

2
11q
6 +1 ln 2− (2q − 1),

which is easy to show greater than zero for all q ≥ 0.
The past few paragraphs have shown that for all valid p, q, and ε, the

derivative ∂f∂ε (p, q, ε) > 0. In other words, for all valid p and q, f(p, q, ε)

is increasing in ε; therefore, for all valid p, q, and ε,

f(p, q, ε) ≥ f(p, q, 0) = 2 p2+ 2q3 − 2 p2+ q3 −
(
p

2
+
2q

3

)
(2q − 1) .

Differentiating the right hand side with respect to p gives

2
p
2
ln 2

2

(
2
2q
3 − 2 q3

)
− 2

q − 1
2
.

This is obviously increasing in p, so is minimized when p is minimum;

after making the substitution p = 8q
3 and doing some rearranging, the

above becomes
1

2

[(
22q − 2 5q3

)
ln 2− (2q − 1)

]
,

which is easily shown to be greater than zero for all q ≥ 4. In other
words, for a given q ≥ 4, f(p, q, 0) is increasing in p, so to minimize
f(p, q, 0), again set p to 8q3 . Therefore,

f(p, q, 0) ≥ f(8q
3
, q, 0) = 22q − 2 5q3 − 2q (2q − 1) ,

1.3. Integer Powering 19

which is greater than zero for all q ≥ 4.
Summarizing, it has been shown that for all valid p, q, and ε,

f(p, q, ε) ≥ f(p, q, 0) ≥ f(8q
3
, q, 0) ≥ 0,

so condition (1.8) must hold, and REDUCE1 gives the correct answer by

lemma 2, lemma 1, and the properties of polynomials discussed in the

text before lemma 1.

The complexity of REDUCE1 relies on two results beyond the scope of

this chapter: namely, the DFTk and DFT
−1
k can be computed in size

O(k2 log k) and depth O(log n), and the evaluation of [p(z)]m|z=2l can
be done in size O(k2) and depth O(log n). In other words, all steps

except the call on MODPOWER can be done in size O(k2 log k) and

depth O(log n). Furthermore, since

k = 2d p2+ 2q3 e ≤ 2 p2+ 2q3 +1 = 2n 12m 2
3 ,

the above size can be written as O(nm
4
3 log n). Including the size for the

k calls on MODPOWER, the resulting size is kS(m, k) + O(nm
4
3 logn).

All recursive calls are done in parallel, so the total depth is D(m, k) +

O(log n).

The problem with repeatedly applying REDUCE1 is that the require-

ments of lemma 3 make reduction to a trivial problem size impossible (since

n must be at least m
8
3); however, it is possible to reduce the power as well as

the number of bits.

1.3.2 Power Reduction

Consider raising a number x to the mth power. If m is a perfect square

with w =
√
m, it is easy to see that xm = (xw)w; unfortunately, m is usually

not a perfect square. To handle the more common case, let v = b√mc and
calculate (xv)v. Of course, this is not the desired answer, but notice that if

e = m− v2 is the error in the exponent of this approximation, e can be easily
bounded by

e = m− v2 ≤ ((v + 1)2 − 1)− v2 = 2v = 2b√mc.

Letting e′ = b e2c, xe
′
can be computed, squared, and multiplied by x (if e is

odd) to achieve xe. Notice that this computation of xe can be done in parallel

with the computation of (xv)v, so the original problem has been reduced to

20 Chapter 1. Newton Iteration and Integer Division

Algorithm REDUCE2(x,m, n);

p← b√mc;
In Parallel do part1, part2

part1: begin

t← MODPOWER(x, p, n);
u← MODPOWER(t, p, n);
end;

part2: begin

e← m− p2;
e′ ← ⌊

e
2

⌋
;

v ← MODPOWER(x, e′, n);
if (2e′ = e)
then begin

w ← v2(mod 2n − 1);
end;

else begin

w← xv2(mod 2n − 1);
end;

end;

y ← uw(mod 2n − 1);
return (y);

end.

FIGURE 1.4

Powering reduction style 2.

3 smaller powerings (each of which raises a number to a power less than or

equal to
√
m) and a constant number of multiplications. This reduction is

called REDUCE2 and is shown in figure 1.4.

The correctness of REDUCE2 follows easily from the above discussion,

and the complexity analysis is simple, so the following lemma is stated without

proof.

LEMMA 4

Assuming MODPOWER(t,m, n) correctly returns tm(mod 2n−1) for all
t, m, and n, the reduction REDUCE2 shown in figure 1.4 correctly returns

1.3. Integer Powering 21

xm(mod 2n − 1). Furthermore, if the call on MODPOWER(t,m, n) re-
quires size S(m,n) and depth D(m,n), then REDUCE requires total size

3S(
√
m,n) +O(M(n)) and total depth 2D(

√
m,n) +O(log n).

Again, there is a problem with using just REDUCE2—while the correct

answer is returned, the number of subproblems grows too rapidly, and the

depth of the powering circuit using just REDUCE2 is Θ(logn logm). For-

tunately, in the design of REDUCE1 and REDUCE2 there were some subtle

adjustments made (such as the choice for r in REDUCE1) that allow the two

reductions to work very well together. Combining the two reductions is ad-

dressed in the following section.

1.3.3 Putting the Pieces Together

The final modular power algorithm consists of an initial reduction using

REDUCE2 followed by a test to see if the power has been reduced to smaller

than 16. If the power is less than 16, then the result can be computed using

the REPEATSQ algorithm presented at the beginning of this section (taking

size O(M(n)) and depth O(log n)); otherwise, the subproblems are further

reduced by two applications of REDUCE1. All three of these reductions can be

viewed together as a single “composite reduction” that produces subproblems

with reduced size (i.e., number of bits) and reduced power. A proof of the

correctness of this algorithm, along with the complexity analysis, is given in

the following theorem.

THEOREM 1.2

Let x be an n-bit integer, and m be an integer with m2 ≤ n. The algo-
rithm just described computes xm(mod 2n− 1) in O(nm4 logn log logn)
size and O(log n+ logm log logm) depth.

PROOF

The correctness of the above algorithm is proved by induction on the

number of complete composite reductions required before the power is

reduced below 16. If no reductions are required, the result is correct by

the correctness of algorithm REPEATSQ. Assume that R ≥ 1 reductions
are required—by the condition of the theorem, m ≤ n 12 , so after the first
reduction using REDUCE2, each subproblem of raising an n-bit number

to the m′th power is such that m′ ≤ n 14 . (Note that this means the
condition for lemma 3 is satisfied.)

22 Chapter 1. Newton Iteration and Integer Division

After the first reduction via REDUCE1, each resulting subproblem has

k ≥ n 12 (m′) 23 bits. (Notice that

m′ = (m′)
3
4 (m′)

1
4 ≤ n 3

16 (m′)
1
4 =

(
n
1
2 (m′)

2
3

) 3
8 ≤ k 38 ,

so the condition for lemma 3 is again satisfied.)

Following the second reduction via REDUCE1, each subproblem has k′ ≥
k
1
2 (m′)

2
3 bits; using the previous bounds for k, (m′)2 can be bounded as

(m′)2 = (m′)(m′) ≤ n 14 (m′) =
(
n
1
2 (m′)

2
3

) 1
2

(m′)
2
3 ≤ k 12 (m′) 23 ≤ k′.

In other words, after one composite reduction each subproblem of rais-

ing a k′-bit number to the m′th power satisfies (m′)2 ≤ k′. Only R − 1
composite reductions are required for these subproblems (since R re-

ductions were required for the original problem), and since (m′)2 ≤ k′,
the induction hypothesis applies to say that all these subproblems are

correctly solved.

Going backwards through each individual reduction in the composite

reduction, it has been noted that the conditions for lemmas 3 and 4

have been satisfied, so the correctness of the algorithm follows directly

from these lemmas.

Now examine the size required for this algorithm. Let S(m,n) denote

the size of raising an n-bit number to the mth power modulo 2n − 1.
The result of applying the size of REDUCE2 (from lemma 4) to the size

of REDUCE1 (from lemma 3) which is again applied to itself gives the

size for one composite reduction. The result is (using k, k′, and m′ as
defined above)

S(m,n) = 3kk′S(m′, k′) +O(k2(m′)
4
3 log k)

+O(n(m′)
4
3 log n) +O(M(n)).

Using the bounds k ≤ 2n 12 (m′) 23 (see the proof of lemma 3) and m′ ≤
m

1
2 , in addition to the new bound k′ ≤ 2k 12 (m′) 23 = 2 32n 14m′, gives a

size of

S(m,n) = 3kk′S(m′, k′) +O(nm
4
3 logn) +O(nm

2
3 logn) +O(M(n)).

Using the Schönhage and Strassen algorithm, we know that M(n) =

O(n log n log logn), so this can be simplified greatly to

S(m,n) = 3kk′S(m′, k′) +O(nm
4
3 logn log logn).

1.3. Integer Powering 23

Removing the big-O notation, the above size bound can be expressed

(for some constant c) as

S(m,n) ≤ 3kk′S(m′, k′) + cnm 4
3 logn log logn.

Notice that this size only applies if a complete composite reduction is

performed (i.e., m′ ≥ 16 or m ≥ 256). For m < 256, only a constant
number of multiplications are required, so S(m,n) = O(M(n)).

The claim is that S(m,n) ≤ c′nm4 logn log logn for some c′, and is
proved by induction on m. For m < 256 and the appropriate c′ and c′′,

S(m,n) ≤ c′′M(n) ≤ c′nm4 logn log logn,

so this serves as a basis for the induction. Now assume m ≥ 256, and
the induction hypothesis states that

S(m′, k′) ≤ c′k′(m′)4 log k′ log log k′

for m′ < m. Using the bound k′ ≤ 2 32n 14m 1
2 and noticing that 2

3
2m

1
2 ≤

m
11
16 for m ≥ 256, k′ can now be bounded as k′ ≤ n 14m 11

16 ≤ n 1932 . This
means that log k′ ≤ 19

32 logn, so using all the upper bounds,

3(kk′)S(m′, k′) ≤ 3
(
2
5
2n

3
4m

5
6

)(
c′2

3
2n

1
4m

1
2m2
19

32
logn log logn

)

=
57

2
c′nm

10
3 logn log logn,

so

S(m,n) ≤ 57
2
c′nm

10
3 logn log logn+ cnm

4
3 logn log logn

≤
(
57

2
c′m−

2
3 + cm−

8
3

)
nm4 logn log logn.

Since m ≥ 256, this can be loosely upper bounded by

S(m,n) ≤
(
3

4
c′ + c

)
nm4 logn log logn,

and for c′ ≥ 4c this becomes

S(m,n) ≤ c′nm4 logn log logn,

proving the claimed size bound.

24 Chapter 1. Newton Iteration and Integer Division

Turning to the depth, let D(m,n) represent the depth of raising an n-bit

number to the mth power modulo 2n− 1, and the depth of a composite
reduction can be expressed as

D(m,n) = 2D(m′, k′) +O(log n)

for m ≥ 256 (i.e., m′ ≥ 16), and D(m,n) = O(log n) for m < 256. A
depth bound of D(m,n) ≤ c′(logn + logm log logm) can be proved by
induction; the basis follows easily for m < 256.

For m ≥ 256, the induction hypothesis states that
D(m′, k′) ≤ c′(log k′ + logm′ log logm′).

Since m′ ≤ m 1
2 , we can bound logm′ log logm′ ≤ 1

2 logm(log logm−1),
so

D(m′, k′) ≤ c′(3
2
+
1

4
logn+

1

2
logm+

1

2
logm(log logm− 1)

= c′(
3

2
+
1

4
logn+

1

2
logm log logm).

In other words, for some constant c,

D(m,n) ≤ 2D(m′, k′) + c logn

≤
(
3c′

logn
+
c′

2
+ c

)
logn+ c′ logm log logm.

Since 3c′
logn ≤ 3c′

2 logm ≤ 3c′
16 for m ≥ 256,

D(m,n) ≤
(
11

16
c′ + c

)
logn+ c′ logm log logm.

For c′ ≥ 16
5 c, this can be simplified to

D(m,n) ≤ c′(logn+ logm log logm),
proving the claimed depth bound.

Returning to the original (exact) powering problem, the following easy

corollary completes the study of integer powering.

COROLLARY 1

If x is an n-bit integer and m is an integer satisfying m ≤ n, then xm
can be computed by a circuit of size O(nm5 logn log logn) and depth

O(log n+ logm log logm).

1.4. High Order Convergence with Newton Approximation 25

PROOF

Let N = nm. Since m ≤ n, multiplying both sides of the inequality by
m shows that m2 ≤ nm = N . By theorem 1.2, after padding x with
zeros in the most significant n(m − 1) places, xm(mod 2N − 1) can be
computed in size O(Nm4 logN log logN) = O(nm5 logn log logn) and

depth O(logN + logm log logm) = O(log n+ logm log logm). Since xm

must be less than 2nm − 1, the modular computation actually gives the
exact value of xm.

1.4
High Order Convergence with Newton Approximation

Given that repeated application of the Newton approximation formula

given in Section 1.2 computes powers in a depth-inefficient way, it is worth-

while to examine how efficient powering methods can be incorporated to re-

duce the complexity of finding reciprocals.

Recall the approximation formula for finding real reciprocals given in

equation (1.4). The initial ideas here are presented in terms of real reciprocals,

and then the simple changes to the integer reciprocal problem are examined.

Some algebraic manipulation shows that applying the approximation formula

twice, the approximation refinement becomes

yi+2 = yi(1 + (1− xyi) + (1− xyi)2 + (1− xyi)3).

In fact, the original equation can be rewritten as

yi+1 = yi(1 + (1− xyi)),

with the basic pattern emerging of

yi+m = yi

2m−1∑
j=0

(1− xyi)j . (1.11)

(Of course, we haven’t proven that this is the general form of repeated appli-

cation of equation (1.4)—this is left to the interested reader. A proof that this

equation, after scaling, gives the correct answer will be given in theorem 5.)

A nice property of equation (1.11) is that the upper limit of the sum

does not necessarily have to be of the form 2m− 1 in order to work correctly.

26 Chapter 1. Newton Iteration and Integer Division

We wish to view an application of equation (1.11) as a single approximation

step, so the new approximation formula can be written as

yi+1 = yi

k−1∑
j=0

(1− xyi)j . (1.12)

This equation is called the kth order Newton approximation formula;

the name comes from the fact that convergence is of order k. Desirable con-

vergence properties can be proven for equation (1.12), but as we are interested

in integer reciprocals, the scaled version should be examined first. Perform-

ing fixed point scaling exactly as was done for the second order formula of

Section 1.2 gives a fixed-point equation; however, as before, only a small num-

ber of bits of yi need to be considered in the calculation of yi+1. If we let

yi = RECIPROCAL(
⌊
x
2n−d

⌋
, d) (i.e., the integer reciprocal of the d most sig-

nificant bits of x), and x′ =
⌊

x
2n−dk

⌋
(the dk most significant bits of x) then

the resulting equation is

yi+1 =


yi

2k−1∑
j=0

2d(k+1)(2k−j−1)(2d(k+1) − x′yi)j

22dk
2

 (1.13)

Notice that here the upper limit on the sum is 2k − 1 instead of k − 1—
the upper limit has been raised to overcome the same type of problem that

required the adjustment stage of RECIP1; however, equation (1.13) is still

referred to as the kth order Newton approximation formula.

To construct an algorithm using equation (1.13), the exact order of each

approximation step must be considered; this schedule of approximations de-

pends on complexity considerations and will be addressed in the next section.

The following lemma shows how equation (1.13) affects an approximation.

LEMMA 5

If d ≥ 2 and yi = RECIPROCAL(
⌊
x
2n−d

⌋
, d), then equation (1.13) gives

yi+1 that satisfies

0 ≤ RECIPROCAL(
⌊ x

2n−dk
⌋
, dk)− yi+1 ≤ 2.

Furthermore, equation (1.13) can be evaluated by a circuit family with

size O(dk7 log dk log log dk) and depth O(log dk + log k log log k).

1.4. High Order Convergence with Newton Approximation 27

PROOF

This proof closely parallels the proof of theorem 1.1. Writing x′ in
two parts as x′ = x12d(k−1) + x0, the assumption on yi states that
yi = RECIPROCAL(x1, d), or that x1yi = 2

2d − s, where 0 ≤ s < x1.
This implies that x′yi = (x12d(k−1)+x0)yi = 2d(k+1)−(2d(k−1)s−x0yi).
To simplify notation, let w = 2d(k+1) and z = (2d(k−1)s − x0yi), so
x′yi = w − z.
Let

d = yi

2k−1∑
j=0

2d(k+1)(2k−j−1)(2d(k+1) − x′yi)j = yi
2k−1∑
j=0

w2k−j−1zj.

The quantity of interest is x′yi+1, so first compute x′d as

x′d = (w − z)
2k−1∑
j=0

w2k−j−1zj =
2k−1∑
j=0

w2k−jzj −
2k−1∑
j=0

w2k−j−1zj+1

= w2k − z2k = 22dk(k+1) − (2d(k−1)s− x0yi)2k.

Dividing by 22dk
2

gives

x′d
22dk2

= 22dk −
[s
2d
− x0yi
2dk

]2k
.

Since s
2d
and x0yi

2dk
are both positive, we can bound∣∣∣ s
2d
− x0yi
2dk

∣∣∣ ≤ max{ s
2d
,
x0yi

2dk

}
. (1.14)

The first of these terms is easy to bound: s2d < 1 since s < x1 < 2
d. To

bound the second term, notice that yi =
⌊
22d

x1

⌋
≤ 22d

x1
, so

x0yi

2dk
≤ x0

2d(k−2)x1
<

2d(k−1)

2d(k−2)2d−1
= 2.

Therefore, using equation (1.14),

(s
2d
− x0yi
2dk

)2k
=
(∣∣∣ s
2d
− x0yi
2dk

∣∣∣)2k < 22k. (1.15)

Since d ≥ 2, this can be further bounded as

22k ≤ 2dk < 2 · 2dk−1 ≤ 2x′.

28 Chapter 1. Newton Iteration and Integer Division

Notice that since the power 2k on the left hand side of equation (1.15) is

even, the error term in equation (1.15) must be positive; in other words,
x′d
22dk2

≤ 22dk. It follows that 22dk − 2x′ < x′d
22dk2

≤ 22dk.
The formula in equation (1.13) actually uses

⌊
d

22dk2

⌋
, so

x′yi+1 = x′
⌊
d

22dk2

⌋
> x′

(
d

22dk2
− 1
)
=
x′d
22dk2

− x′ > 22dk − 3x′

If RECIPROCAL(x′, dk) − yi+1 ≥ 3, then x′yi+1 ≤ 22dk − 3x′. As just
shown, this is impossible, so RECIPROCAL(x′, dk)− yi+1 ≤ 2.
To evaluate equation (1.13), a circuit has to compute the jth power of

d(k + 1) bit numbers, for 0 ≤ j < 2k. Noticing that for each j the size
of this powering is O(dkj5 log dk log log dk) from corollary 1, the total

size required to take all the powers necessary is asymptotically upper-

bounded by

2k−1∑
j=0

cdkj5 log dk log log dk = cdk log dk log log dk

2k−1∑
j=0

j5

< cdk7 log dk log log dk.

As the reader can easily verify, the cost of adding these powers, mul-

tiplying by yi, and scaling back down are all negligible compared the

cost of powering, so the size of the circuit to evaluate equation (1.13) is

O(dk7 log dk log log dk).

All the powers are done in parallel, each having depth at most O(log dk+

log k log log k), and every other operation (the large sum and the re-

scaling) in the evaluation of equation (1.13) can be shown to have depth

O(log dk); therefore, the total depth of evaluating equation (1.13) is

O(log dk + log k log log k).

1.5
An Efficient Parallel Reciprocal Circuit

The results of the previous section can be used to design a parallel algo-

rithm for finding reciprocals in depth O(log n log logn). In essence, lemma 5

says that an approximation to the reciprocal that is accurate to d bits can

be extended to an accuracy of dk bits in O(dk7 log dk log log dk) size and

O(log dk + log k log log k) depth.

1.5. An Efficient Parallel Reciprocal Circuit 29

To design a reciprocal algorithm, we need to come up with a sequence of

approximation accuracies d1, d2, d3, . . . such that after doing i approximation

refinements, the result is accurate to di bits; eventually, all n bits should

be known. In searching for criteria to design such a sequence, a desirable

feature of parallel algorithms is that the work is spread out evenly across

time. Looking at the form of the size bound from lemma 5, a good candidate

is to set the size of each stage to O(n log n log logn). Setting d1 = 2 (so two

bit are known initially), the schedule then works out as

dik
7
i log diki log log diki ≤ n logn log logn

=⇒ di
(
di+1

di

)7
log di+1 log log di+1 ≤ n logn log logn

=⇒ d7i+1 log di+1 log log di+1 ≤ nd6i logn log logn
Noticing that di+1 ≤ n at all times (otherwise, the whole answer would be
known!), the above inequality is satisfied with

di+1 = n
1
7 d

6
7

i .

Solving this recurrence (with the initial condition d1 = 2) reveals that the

sequence of accuracies is

di = 2n
1−(67)

i−1
.

Unfortunately, this schedule does not produce just integers for accuracies

(in fact, not necessarily even rational numbers!), so instead, let m = logn

(recall that n is a power of 2 by assumption) and define the function

f(i) =

⌊
m

(
1−

(
6

7

)i−1)⌋
. (1.16)

Then the schedule can be defined by

di = 2
f(i). (1.17)

The result is the algorithm shown in figure 1.5.

LEMMA 6

Algorithm RECIP2 shown in figure 1.5 correctly computes the reciprocal

of an n-bit number, and can be realized with a circuit family of size

O(n logn(log logn)2) and depth O(log n log logn).

30 Chapter 1. Newton Iteration and Integer Division

Algorithm RECIP2(x, n);

m← log n;
d1 ← 2;
i← 2;
if (x ≥ 3 · 2n−2)
then begin

y1 ← 5;
end;

else begin

y1 ← 8;
end;

while i ≤
⌈
log logn
log 76

⌉
do begin

t←
⌊
m
(
1− (67)i−1)⌋;

di ← 2t;
ki ← di

di−1 ;

x′ ← ⌊
x

2n−di
⌋
;

yi+1 ←
⌊
yi
∑2ki−1
j=0 2

di−1(ki+1)(ki−j−1)(2di−1(ki+1) − x′yi)j
22di−1k

2
i

⌋
;

for j ← 1 downto 0 do
if (x′(yi+1 + 2j)) ≤ 22di
then begin

yi+1 ← yi+1 + 2j ;
end;

i← i+ 1;
end;

return (yi);

end.

FIGURE 1.5

Algorithm RECIP2.

PROOF

The fact that algorithm RECIP2 meets the schedule of equation (1.17)

1.5. An Efficient Parallel Reciprocal Circuit 31

is a very simple proof by induction. The basis of the induction is

trivial—the integer reciprocals of the two possible two-bit numbers are

hard-wired into the algorithm. The induction step is proved by lemma

5 (notice the adjustment step in figure 1.5 that takes up the slack in

possible error from lemma 5). The final answer after p =
⌈
log logn
log 76

⌉
+ 1

steps is dp bits. Computing f(p) (where f is defined in equation (1.16))

shows that f(p) = m; in other words, dp = 2
m = n.

By lemma 5, the size of stage i is O(di−1k7i log di−1ki log log di−1ki).
Examining ki, the order of approximation at stage i is ki = 2

f(i)−f(i−1).
Focusing on the exponent,

f(i)− f(i− 1) =
⌈
m

(
6

7

)i−2⌉
−
⌈
m

(
6

7

)i−1⌉

≤
⌈
m

(
6

7

)i−2⌉
− 6
7

⌈
m

(
6

7

)i−2⌉
+ 1

=
1

7

⌈
m

(
6

7

)i−2⌉
+ 1.

This means that

di−1k7i ≤ 2m−
⌈
m(67)

i−2⌉
+
⌈
m(67)

i−2⌉
+7
= O(n).

Furthermore, since di−1ki < n, the total size of stage i (regardless of i) is
O(n logn log logn). Over all O(log logn) stages, the total size becomes

O(n logn(log logn)2).

By lemma 5, the depth of stage i is O(log di−1ki + log ki log log ki).
Examining each term separately, the first term is O(log n) for all i, which

produces a total depth of O(log n log log n) over all stages. In the second

term, log log ki can be bounded by log logn to obtain a depth over all

stages of

p∑
i=2

log ki log log ki ≤ log logn
p∑
i=2

log ki

= log logn

p∑
i=2

[f(i)− f(i− 1)]

= log logn [f(p)− f(1)] = O(log n log logn).

32 Chapter 1. Newton Iteration and Integer Division

Combining both terms of the depth, the total depth can be seen to be

O(log n log logn).

The algorithm RECIP2 just described is certainly an efficient reciprocal

algorithm (in terms of both size and depth), but it does not clearly specify

a relationship between the complexity of multiplication and that of division.

(The similarity of the size bound with the size of the Schönhage-Strassen

multiplication algorithm is mere coincidence.) In this sense, algorithm RECIP1

was better, since the size was closely tied to the size of multiplication (in fact,

the size was O(M(n))). Can the good qualities of both algorithms (the size

bound of RECIP1 and the small depth of RECIP2) be combined? Fortunately,

the answer to this question is yes.

The new algorithm is RECIP3 shown in figure 1.6; the value N is the

number of bits of the original problem (before any reductions). The basic

idea behind algorithm RECIP3 is to use RECIP2 to find a sufficiently accurate

initial estimate of the integer reciprocal so that only O(log logn) stages of

second order approximations are needed.

THEOREM 1.3

Algorithm RECIP3 in figure 1.6 correctly computes the reciprocal of an

n-bit number, and can be realized with a circuit family of size O(M(n))

and depth O(log n log logn).

PROOF

Algorithm RECIP3 is a hybrid of RECIP1 and RECIP2, and the cor-

rectness follows directly from the correctness of those algorithms (see

theorem 1.1 and lemma 6).

After i steps of recursion in RECIP3, n = N
2i , so it only takes log(log

2N) =

O(log logN) steps of second order reduction before n ≤ N
log2N

. The com-

plexity analysis of the second order stages is identical to theorem 1.1,

but with only O(log logN) stages. In other words, the size of the second

order approximations (not counting the call on RECIP2) is O(M(N))

and the depth is O(logN log logN).

The size of the call on RECIP2 is easily computed from lemma 6 to be

O(
N

log2N
log

N

log2N
log log

N

log2N
) = O(N),

and the depth is O(logN log logN).

1.5. An Efficient Parallel Reciprocal Circuit 33

Algorithm RECIP3(x, n);

if n ≤ N
log2N

{N is the size of the original problem.}
then begin

y ← RECIP2(x, n);
end;

else begin

t← RECIP3(⌊ x
2n/2

⌋
, n2);

y ←
⌊
2
3
2
n+1t−xt2
2n

⌋
;

if (x(y + 1) ≤ 22n)
then begin

y ← y + 1;
end;

end;

return (y);

end.

FIGURE 1.6

Algorithm RECIP3.

34 Chapter 1. Newton Iteration and Integer Division

Combining the complexity of the second order stages with the complexity

of the call on RECIP2, the final result is that the circuit for RECIP3 has

size O(M(N)) and depth O(logN log logN).

1.6
Summary

This chapter examined the most complex of the basic arithmetic prob-

lems—division. The algorithm presented in this chapter is essentially that

of Reif and Tate [14]; some minor changes have been made to clarify the

presentation. While it can be shown that division is at least as hard as the

other arithmetic problems (addition, subtraction, and multiplication), it is

unknown whether division is strictly harder than the other operations. In

comparison with multiplication (the second hardest problem), the results of

theorem 1.3 show that while it may still be possible that division is harder

than multiplication, the difference is not all that great (in terms of asymptotic

growth).

There is potential for future research on division, either in finding a

lower bound or in finding a better upper bound that could possibly match

that of multiplication (as is the case sequentially).

For further information, the interested reader can consult Pippenger [11]

for an excellent summary of computing arithmetic functions with various cir-

cuit models. For more in-depth treatment of multiplication, consult Schönhage

and Strassen [15]. Sequential treatment of the basic arithmetic problems (in-

cluding Schönhage and Strassen’s multiplication algorithm), as well as an

introduction to the Fast Fourier Transform, is covered in Aho et al. [1]. For a

historical tour through the development of division algorithms (most of which

use variations on the method described in Exercise 1.6), consult Cook [7],

Reif [12], Beame et al. [3], Reif [13], Hastad and Leighton [9] Melhorn and

Preparata [10], and Shankar and Ramachandran [16]. Treatment of more com-

plex functions (such as square root and logarithms) can be found in Alt [2]. For

various approaches to the polynomial reciprocal problem, see Bini and Pan [4]

and Eberly [8] as well as Reif and Tate [14] which describes the algorithm

hinted at by Exercise 1.7. Recently a new, highly efficient, O(log n log∗ n)
time algorithm for finding polynomial reciprocals has been found by Bini and

Pan [5]. Finally, the efficient powering circuit described in Exercise 1.8 is due

to Hui Chen [6].

1.7. Exercises 35

1.7
Exercises

1.1 Prove that the integer division problem can be solved by finding a single

integer reciprocal and performing a constant number of multiplications and

divisions.

1.2 Derive an equation that describes how the error is affected by

a) equation (1.4)

b) equation (1.12).

What assumptions must be made on the value of x in order for the iteration

equations to converge to the appropriate answer?

1.3 The depth of any bounded fan-in circuit family for multiplication is Ω(logn).

Calculate the depth of algorithm RECIP1 more exactly than was done in

theorem 1.1 to show that it is Ω(log2 n).

1.4 Since two reductions by REDUCE1 give subproblems with approximately

n1/4m bits, why couldn’t we define r in REDUCE1 at 1
4
p + q so as to only

require one reduction? How does using two reductions overcome this problem

(what is the number of subproblems produced in each case)?

1.5 How would the error estimate of lemma 5 be affected if the upper limit on

the sum in equation (1.13) was k − 1 instead of 2k − 1?
1.6 There are, of course, other ways of computing reciprocals than with the

algorithm presented in this chapter. The purpose of this exercise is to derive

a different algorithm for computing reciprocals. For simplicity, assume we are

solving the real reciprocal problem using fixed point binary representation.

The input x takes n bits to represent and is assumed to be in the range

(0, 1). We want the answer z such that |z − 1
x
| < 2−n.

a) Derive the Maclaurin series expansion for f(u) = 1
1−u . For what values

of u does this series converge?

b) Use this series to design an algorithm that computes the reciprocal of

x. The range of values for u should be restricted so that only O(n)

terms of the series need to be computed to achieve the desired accuracy.

c) Using the powering complexity from corollary 1, what is the complexity

of this reciprocal algorithm?

1.7 Let R = {D,+, ·, 0, 1} be a ring, and let p(x) be a degree n polynomial
in R[x]. The polynomial reciprocal problem on input p(x) is defined as

computing the unique polynomial q(x) such that

x2n−2 = q(x)p(x) + r(x),

36 Chapter 1. Newton Iteration and Integer Division

where the degree of r(x) is less than n. The floor notation can be used to

equivalently state

PRECIP(p(x)) = q(x) =

⌊
x2n−2

p(x)

⌋
.

The model of computation for this problem is a circuit where each node can

perform addition, multiplication, or reciprocation (when it is defined) in the

ring R.

A form of Newton iteration can be used to solve this problem, and provides

good sequential results. Consider the polynomial p(x) in “halves”, so p(x) =

p1(x)x
n/2 + p0(x), and let q1(x) = PRECIP(p1(x)). Then the reciprocal of

p(x) can be calculated by

PRECIP(p(x)) =

⌊
2q1(x)x

(3/2)n−2 − p0(x)(q1(x)))2
xk−2

⌋
.

Notice how similar this formula is to the second-order integer iteration for-

mula of algorithm RECIP1. Decide what is meant by a “high-order” formula

for this problem, and derive the iteration formula. Use this formula to design

an efficient parallel algorithm for the polynomial reciprocal problem.

In analyzing the complexity of this algorithm, let PM(n) be the size com-

plexity of multiplying two degree n polynomials in depth O(log n). Also

assume that the mth power of a degree n polynomial can be computed in

size O(nm log n) and depth O(log n). The algorithm for this problem should

have size O(PM(n)) and depth O(log n log log n).

1.8 For this chapter’s goal of taking reciprocals, the complexity of the powering

circuit described in corollary 1 was sufficient; however, if the end goal is

powering, substantially more efficient circuits can be designed. This problem

will lead you through the steps to design such a powering circuit.

a) If you are given values x2
k

, for k = 1, · · · , blogmc, design a circuit
for computing xm that has O(nm log nm log log nm log logm) size and

O(log nm log logm) depth.

b) If m = 2p for some integer p, then we can compute xm by letting

f = bp/2c and c = dp/2e, and then noticing that

xm = x2
p

=
(
x2
f
)2c
.

If we use the circuit from corollary 1 for each powering, what is the

complexity of this powering algorithm?

c) Part (b) can be generalized by letting f = bp/cc and c = dp/ce for any
integer c. Then by combining appropriate numbers of powerings to the

2f power and to the 2c power, we can very efficiently compute x2
p

. Give

the details of this generalized algorithm, and derive its complexity.

Bibliography 37

d) For the final result, use part (c) to compute the powers required as

input to part (a), and combine these results to give an efficient powering

circuit. For any constant ε > 0, you should be able to derive a circuit

with size O(nm1+ε log n log log n) and depth O(log nm log logm).

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis

of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] H. Alt. Comparing the combinatorial complexities of arithmetic func-

tions. J. Assoc. Comput. Mach., 35(2):447–460, April 1988.

[3] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for divi-

sion and related problems. SIAM J. Comput., 15(4):994–1003, November

1986.

[4] D. Bini and V. Pan. Polynomial division and its computational complex-

ity. J. of Complexity, 2:179–203, 1986.

[5] D. Bini and V. Pan. Improved parallel polynomial division and its exten-

sions. Proc. 33rd Annual IEEE Symposium on Foundations of Computer

Science, pages 131–136, 1992.

[6] H. Chen. Private communication, 1993.

[7] S. A. Cook. On The Minimum Computation Time of Functions. PhD

thesis, Harvard University, Cambridge, MA, 1966.

[8] W. Eberly. Very fast parallel matrix and polynomial arithmetic. Proc.

25th Annual IEEE Symposium on Foundations of Computer Science,

pages 21–30, 1984.

[9] J. Hastad and T. Leighton. Division in O(log n) depth using O(n1+ε)

processors, 1986. Unpublished note.

[10] K. Melhorn and F. P. Preparata. Area-time optimal division for T =

Ω((log n)1+ε). Symposium on Theoretical Aspects of Computer Science,

pages 341–352. Lecture Notes in Computer Science 210, Springer-Verlag,

1986.

38 Chapter 1. Newton Iteration and Integer Division

[11] N. Pippenger. The complexity of computations by networks. IBM J. Res.

Dev., 31(2):235–243, March 1987.

[12] J. H. Reif. Logarithmic depth circuits for algebraic functions. Proc. 24th

Annual IEEE Symposium on Foundations of Computer Science, pages

138–145, 1983.

[13] J. H. Reif. Logarithmic depth circuits for algebraic functions. SIAM J.

Comput., 15(1):231–241, February 1986.

[14] J. H. Reif and S. R. Tate. Optimal size integer division circuits. 21st

STOC, pages 264–273, 1989.

[15] A. Schönhage and V. Strassen. Schnelle multiplikation grosser zahlen.

Computing, 7:281–292, 1971.

[16] N. Shankar and V. Ramachandran. Efficient parallel circuits and algo-

rithms for division. Inform. Process. Lett, 29:307–313, 1988.

