
Dynamic Parallel Tree Contraction∗
(Extended Abstract)

John H. Reif†

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213–2890

Stephen R. Tate

Department of Computer Science
University of North Texas

P.O. Box 13886
Denton, TX 76203–6886

Abstract

Parallel tree contraction has been found to be a useful and
quite powerful tool for the design of a wide class of efficient
graph algorithms. We propose a corresponding technique
for the parallel solution of incremental problems. As our
computational model, we assume a variant of the CRCW
PRAM where we can dynamically activate processors by a
forking operation.
We consider a dynamic binary tree T of ≤ n nodes and

unbounded depth. We describe a procedure, which we call
the dynamic parallel tree contraction algorithm, which in-
crementally processes various parallel modification requests
and queries:
(1) parallel requests to add or delete leaves of T , or mod-

ify labels of internal nodes or leaves of T , and also
(2) parallel tree contraction queries which require recom-

puting values at specified nodes.
Each modification or query is with respect to a set of nodes
U in T .
Our dynamic parallel tree contraction algorithm is a ran-

domized algorithm that takesO(log(|U | logn)) expected par-
allel time using O(|U| log n

log(|U| log n)) processors. We give a large
number of applications (with the same bounds), including:
(a) maintaining the usual tree properties (such as number

of ancestors, preorder, etc.),
(b) Eulerian tour,
(c) expression evaluation,
(d) least common ancestor, and
(e) canonical forms of trees.
Previously, there where no known parallel algorithms for

incrementally maintaining and solving such problems in par-
allel time less than Θ(log n).
In deriving our incremental algorithms, we solve a key

subproblem, namely a processor activation problem, within
the same asymptotic bounds, which may be useful in the

∗This research was supported by DARPA/ISTO Grant N00014-91-
J-1985, Subcontract KI-92-01-0182 of DARPA/ISTO prime Contract
N00014-92-C-0182, NSF Grant NSF-IRI-91-00681, and NASA sub-
contract 550-63 of prime Contract NAS5-30428.

†Permanent address: Department of Computer Science, Duke Uni-
versity, Box 90129, Durham, NC 27708–0129

design of other parallel incremental algorithms. This algo-
rithm uses an interesting persistent parallel data structure
involving a non-trivial construction.
In a subsequent paper, we apply our dynamic paral-

lel tree contraction technique to various incremental graph
problems: maintaining various properties, (such as color-
ing, minimum covering set, maximum matching, etc.) of
parallel series graphs, outerplanar graphs, Helin networks,
bandwidth-limited networks, and various other graphs with
constant separator size.

1 Introduction

Parallel tree contraction is broadly applicable technique for
the parallel solution of a large number of tree problems, and
is used as an algorithm design technique for the design of
a large number of parallel graph algorithms. Parallel tree
contraction was introduced by Miller and Reif [12], and has
subsequently been modified (to improve efficiency and/or
simplify explanation) by He and Yesha [8], Gazit, Miller,
and Teng [7], and Kosaraju and Delcher [11], among many
others. A textbook description is given by JáJá [9], and
an excellent survey presentation is given by Karp and Ra-
machandran [10].
Tree contraction has been used in designing many ef-

ficient parallel algorithms, including expression evaluation,
finding least common ancestors, tree isomorphism, maxi-
mal subtree isomorphism, common subexpression elimina-
tion, computing the 3-connected components of a graph,
and finding an explicit planar embedding of a planar graph.
In this paper, we are concerned with dynamic problems

on trees. In dynamic problems, we are given an initial tree
T , and then an on-line algorithm processes requests regard-
ing T . Requests may be either incremental changes to T
or requests for certain values computed using the tree. A
simple example is maintaining the pre-order numbering on
a tree. The on-line algorithm would then have to handle
incremental changes to the tree, and would also have to
quickly answer queries about the pre-order number of any
tree node. Our dynamic algorithms are based on the parallel
tree contraction process, and hence we call such algorithms
incremental tree contraction algorithms. By maintaining the
connection between our incremental algorithms and the par-
allel tree contraction algorithm, we use the vast amount of
previous work in parallel algorithms that use tree contrac-
tion to create incremental algorithms for a wide range of
problems.

1.1 Previous sequential incremental algorithms

Incremental algorithms respond to requests to either change
a data structure slightly, or answer queries to the data struc-
ture. We make a distinction between quantities that we ex-
actly maintain, and quantities that we incrementally main-
tain. A quantity is exactly maintained if after each incre-
mental step of the algorithm there are variables containing
exactly the value that we are interested in. In other words,
to find the value, an algorithm only needs to read the appro-
priate variable — no computation is necessary. For example,
in an algorithm in this paper we will exactly maintain the
number of descendants in a certain tree; thus, after each
step, each node has a variable that says exactly how many
descendants are below that node.
On the other hand, some quantities are incrementally

maintained. These values are not stored explicitly, but can
be quickly calculated when needed. For example, it is diffi-
cult to exactly maintain the pre-order numbering of a tree
because one small change to the tree can affect the pre-order
numbering of Ω(n) nodes in the tree. However, by exactly
maintaining the number of descendants in a balanced tree,
we can quickly (in O(log n) sequential time) compute the
current pre-order number of any node in the tree.
Previous work on maintaining dynamic trees has been

done by Sleator and Tarjan [16] and by Frederickson [5, 6].
In particular, Frederickson notes that his algorithm for dy-
namic tree maintenance clusters tree nodes in a manner
very similar to that of tree contraction, and performs se-
quential updates in O(log n) time. The problem of main-
taining dynamic expression trees was studied by Cohen and
Tamassia [3], who gave an algorithm with O(log n) update
and query time. Fredrickson applies his dynamic tree data
structure to many interesting dynamic graph problems, in-
cluding dynamic expression evaluation [6], giving O(log n)
bounds for all incremental requests. In fact, his algorithm
does cluster nodes in a similar manner to the original ver-
sions of tree contraction (those with both rake and compress
operations), but in this paper we consider clustering nodes
in a manner more similar to the more recent, and simpler
version of tree contraction due to Kosaraju and Delcher [11].
Our data structure is in turn considerably simpler and easier
to maintain than the dynamic tree structures of Frederick-
son. Furthermore, by by making the connection between
tree contraction and our dynamic tree maintenance algo-
rithms clear, we are able to easily apply our incremental
tree contraction procedure to the wide variety of problems
that have used standard parallel tree contraction.

1.2 The largely unexplored problem of parallel incremen-
tal algorithms

In this paper, we consider the largely unexplored problem
of performing incremental updates on a dynamic tree us-
ing a parallel machine (a CRCW PRAM) for the updates.
In fact, we consider the more general case where a set of
updates is to be performed concurrently by a parallel ma-
chine. We give algorithms that can perform a set of updates

in O(log(|U | log n)) expected time with O(|U| log n
log(|U| log n)) pro-

cessors, where |U | denotes the size of the set of concurrent
updates that have been requested. For a constant num-
ber of updates (i.e., when |U | = O(1)), notice that the
updates are performed in O(log log n) expected time using

O(logn
log logn

) processors. Also notice that with the known se-

quential algorithms, a sequence of |U | queries or update re-
quests takes O(|U | log n) time, so our parallel algorithms are
work-optimal with respect to these bounds.

1.3 Dynamic parallel tree contraction

We consider a dynamic binary tree T of ≤ n nodes and
unbounded depth. We define a procedure, namely the dy-
namic parallel tree contraction algorithm, which incremen-
tally processes parallel requests to add or delete leaves of T ,
modify labels of internal nodes or leaves of T , and also in-
crementally processes parallel tree contraction queries that
recompute values at specified nodes. Each modification or
query is with respect to a set of parallel update requests
specified at a set of nodes U in T .
Our dynamic parallel tree contraction algorithm will ini-

tially need to solve the following incremental problem. Given
a tree PT of size n, and a small set of leaves U , define the
parse tree of U (denoted PT (U)) to be the set containing
all of the leaves in U , and all of their ancestors. We need
to maintain data structures so that, given any set U , we
can quickly identify and activate processors for the nodes of
PT (U).
We will show how to solve this problem in Section 2, and

how to solve the remaining problems required for dynamic
parallel tree contraction in Section 4. The result is a ran-
domized algorithm that runs in O(log(|U | log n)) expected
time, using O(|U| log n

log(|U| log n)) processors.

1.4 The Self-Healing Paradigm: Terminology for Dynamic
Algorithms Based on Tree Contraction

For our dynamic algorithms, we use a scenario, concepts
and terminology which we will we borrow from the movie
Terminator 2. In that movie, there is a robot made of a
liquid metal. The robot exhibits a very interesting self heal-
ing property, which can be adopted to dynamic algorithms.
Projectiles which entering the robot may cause wounds run-
ning completely through the robot. Nevertheless, the robot
rapidly restructures itself to adapt to the change, and heal
the wound (the response to the attack is rapid as well).
Our deterministic dynamic algorithms based on tree con-

traction have the property that a set of parallel requests
(insertions or deletions) may require the tree to be restruc-
tured. The parts to be restructured form a subtree of the
parse tree. We will call the parts to be restructured the
wound.
(Step 1) Wound Location and Process Activation:
The first step will be to identify the location of the

wound, which (in dynamic tree contraction in processing
the query) can run from a query node up to the root. Also
in this step we must activate processes which will be used
in subsequent steps (this step is harder than might be ex-
pected, and is solved in Section 2).
(Step 2) Wound Healing
The next step in processing the query will be to heal

the wound using the processes activated in step 1. In our
case, this is the process of restructuring the parallel tree
contraction parse tree. This will be done by a call to a our
dynamic parallel tree contraction algorithm, as described in
Section 4, using the processes activated in step 1.
(Step 3) Answering the Attack
The final step in processing will be to respond to the

query. In our case we will need simply to re-evaluate the

fragment of the parallel tree contraction parse tree healed
(restructured) in step 2. This can be done in our case by
the usual (non-dynamic) parallel tree contraction using the
processes activated in step 1.
The above concept, scenario, and terminology are quite

useful in the case where we have a dynamic processes which
persists indefinitely, and must heal itself in a dynamic man-
ner. Note: We feel it is important that a commonly used,
widely applicable terminology be adopted for processes such
as described above.
Note that the recent papers of Armon and Reif [2], and

Reif, Spirakis, and Yung [15] use the replicant terminology
of the movie Blade Runner for description of a (rather dif-
ferent) class of randomized dynamic algorithms where pro-
cesses cycle through periods of reincarnation: activation,
death, total rebuilding, and reactivations.

2 The Random Splitting Tree

A binary splitting tree (BST) is a binary tree in which each
node has either zero or two children (also called a full bi-
nary tree). Many O(log n) time parallel algorithms have an
underlying computational structure that resembles such a
tree, and either proceeds from the root of the tree to the
leaves (as in quicksort or flashsort), or from the leaves to
the root (as in an n element summation), or perhaps even
both (the contraction and expansion phases of tree contrac-
tion). By considering how to maintain such a splitting tree
under incremental changes, we can hope to derive parallel
incremental algorithms for a large class of problems.
Given a BST PT with n leaves (which we will call a parse

tree for reasons that become apparent later), and a subset U
(called the update set) of the leaves, define the parse tree of
the set U (denoted PT (U)) to be the subtree of PT that is
made up of the leaves in U and all of the ancestors of nodes
in U . It is fairly easy to see that for balanced trees, PT (U)
cannot be too large — in fact, if the depth of PT is O(log n),
then we can bound the size by |PT (U)| = O(|U | log n).
We would like to perform operations on PT (U) in par-

allel, using only O(|U| log n
log(|U| log n)) processors, which raises the

processor allocation problem: namely, in a tree of size O(n)

how can we quickly activate a small set (size O(|U| log n
log(|U| log n)))

of processors, one for each node in the parse tree (by quickly,
we mean O(log(|U | log n)) time). For example, consider the
case in which U contains a single leaf of a balanced tree, and
so PT (U) consists of the O(log n) nodes on the path from
this leaf to the root. If we have no supplemental informa-
tion about our tree T , then the best we can do is follow the
parent links, giving an Θ(log n) time, or Θ(|U | log n) time
algorithm (in particular, we cannot do the standard “pointer
jumping” because we don’t know which set of O(log n) nodes
are involved in the operations — in fact, identifying these
nodes is our goal!).
To solve the processor activation problem, we supple-

ment our tree with the following information: at each node
v, store a flag ACTIVEv which is initially 0 for all nodes (the
purpose of this flag will be explained later), the depth of the
node dv (the root has depth 0), the number nv of nodes in
the subtree rooted at v, and for every node whose height is
greater than log log n we store an array with mv = blog dvc
entries sv,1, sv,2, · · · , sv,mv (called shortcuts), where sv,i is

the unique ancestor of v such that

dsv,i =

⌈
dv

(
1−
(
1

2

)i)⌉
.

For uniformity of later arguments, we assume that sv,0 is the
root node of the tree T . Note that if only O(n

log log n
) nodes

of a depth O(log n) tree T have height greater than log log n
(as is true in most trees), then all of this information can be
stored in O(n) space. We call this data structure a binary
splitting tree with shortcuts (BSTS), and it can be used to
solve the processor activation problem as described in the
following theorem.

Theorem 2.1 Given a O(log n) depth BSTS and a set of
nodes U , we can identify the nodes of PT (U) in parallel time

O(log(|U | log n)) using O(|U| log n
log(|U| log n)) processors.

Proof : Initially, we start out with |U | processors active,
each processor associated with an element of U . As a first
stage, every processor follows parent pointers up the tree,
setting the ACTIVE flag for each node visited, until it finds
a node that contains a shortcut list. This uses O(|U |) pro-
cessors and O(log log n) time.
The next stage of the activation process uses the short-

cut information to quickly identify the remaining nodes of
PT (U). Processors will be activated by a forking procedure
— for example, a processor may discover (by a method to
be described later) a node of PT (U) that has not been pre-
viously identified, and so will start a new processor that will
be associated with that node. A processor can be activated
for a tree node v only if the corresponding ACTIVEv flag is
0, and when the processor is started ACTIVEv is set to 1.
After an update set U is fully processed, and the processors
of PT (U) are being deactivated, each processor resets it’s
ACTIVE flag to 0 for the next round.
At time t of the startup procedure, each processor ma-

nipulates a range of depth values denoted `v,t · · ·uv,t, where
each processor initially starts off with range `v,0 = 0 · · · dv =
uv,0. Each node also maintains a position in its shortcut list
pv,t, initialized to pv,0 = 0. At every step, we will maintain
the property that `v,t = dsv,pv,t . To advance the startup

procedure by one step, we set pv,t+1 = pv,t+1 and set `v,t+1
to the corresponding value. Next, we activate a processor
for node w = sv,pv,t+1 (if necessary). For the new node and
processor, initialize uw,t+1 = `v,t+1, and initialize `w,t+1 by
setting pw,t+1 to the unique value k such that

dsw,k ≤ `v,t and dsw,k+1 > `v,t.
In essence, we are taking a range of depths, and starting a
new processor to activate nodes in the smallest half of the
depths.
It can easily be shown that pw,t+1 can only be pv,t or

pv,t+1, so pw,t+1 can be found in constant time by checking
both of the possible values. At time t+1, the range of depths
for both v and w are at most 2/3 of the range of v at time
t, so consequently the largest range present in the tree goes
down by a constant factor at each step. We repeat this basic
step until every range contains at most log(|U | log n) values.
Now each processor can sequentially traverse up the tree to
the next higher activated location, marking nodes as being
in PT (U) as it goes, which takes at most log(|U | log n) steps.
Thus, it follows that for any leaf v ∈ U , all of the dv + 1

nodes on the path from v to the root get identified within
time

O
(
log
(
max
v∈U
dv

)
+ log(|U | log n)

)
= O(log(|U | log n)).

Furthermore, leaf v ∈ U starts at most O(dv
log(|U| log n)) pro-

cessors, so the total number of processors used by this pro-

cedure is O(|U| log n
log(|U| log n)).

We can define a probability distribution on binary split-
ting trees by the following construction procedure: For the
n leaves v1, v2, · · · , vn, pick a random integer k in the range
1..n − 1. Create a node w (this will be the root of the
BST), and split the leaves into two sets (v1, · · · , vk) and
(vk+1, · · · , vn). Recursively construct trees for these two
sets, and the roots of the constructed trees will be the chil-
dren of node w. If, at some point in time, a BST is really a
random tree with exactly this distribution, then we call the
tree a random binary splitting tree (RBST); furthermore, if
the tree is a random variable with this distribution and the
shortcut information is present in the tree, we call the tree a
random binary splitting tree with shortcuts (RBSTS). We re-
lax the condition on where shortcut information must be in
a RBSTS — shortcut information is only required in nodes
with subtrees of depth at least 2 log log n, and should not be
in nodes with depth less than 1

2
log log n. Note that a RBST

or a RBSTS with n leaves has expected depth O(log n). We
show below that we can efficiently construct a RBSTS from
a list of leaves, including computing all of the shortcuts.

Lemma 2.1 Given a list of n values, we can construct a
RBSTS in O(log n) expected time using O(n

logn
) processors.

Proof : The construction proceeds in two stages: building
the tree, and making the shortcut lists. Building the tree
is a straightforward procedure in which new processors are
started for each subtree, until at most n

log n
processors have

been started. At this point, each remaining subtree has
expected size O(log n), so the remaining splittings are done
sequentially within each of these subtrees. Once the tree is
constructed, tree contraction can be performed on the tree
to optimally compute the depth of the subtree rooted at
each node.
Next, stage 2 will construct a shortcut list for every node

that is the root of a subtree of depth greater than log logn.
To see how to construct a shortcut list efficiently, consider
the shortcut lists for two nodes v and w, where v is a parent
of w. Since dw = dv + 1, it must be true that for all short-
cut entries j, sw,j can only be either sv,j or sv,j + 1. Thus,
one time step after v has computed sv,j , node w can, in
constant time, compute sw,j . Computation of the shortcut
list for nodes at depth d is started at time-step d of stage
2, and a node at depth d can immediately start computing
its shortcut values from the values already computed at its
parent. The total time for a node on level d to initialize
its shortcut list is d + log d — since the expected depth of
the tree is O(log n), the total expected time for stage 2 is
O(log n + log log n) = O(log n). The total number of pro-
cessors required is the total expected number of nodes with
subtrees of depth greater than log logn, which is O(n

logn
).

Note that Theorem 2.1 applies to a RBSTS, so we may
quickly identify and activate parse trees in a RBSTS. The

benefit of the randomized structure is that a RBSTS is easy
to dynamically maintain, as we will explain next.
First, we consider adding new leaves to a RBSTS, and

maintaining all of the shortcut and supplemental informa-
tion, in addition to maintaining the correct distribution on
the set of possible BST’s. The idea is essentially this: if a
new leaf z is inserted between leaves vk and vk+1, then with
probability n−1

n
simply recursively insert z in the subtree

that contains vk. However, with probability
1
n
throw away

the old tree structure and build a new tree RBSTS with
root w and subtrees containing the leaves (v1, · · · , vk) and
(z, vk+1, · · · , vn). In the worst case, this procedure can be
very expensive, but the worst case only occurs with proba-
bility 1

n
; the following theorem generalizes the addition pro-

cedure to the insertion of a set of nodes, and shows that the
expected running time is small.

Theorem 2.2 A set U of new leaves can be inserted into
an existing RBSTS in O(log(|U | log n)) expected time using
O(|U| logn

log(|U| log n)) processors, resulting in a grown, valid RB-
STS with high probability.

Proof : (Sketch) Let S a random variable representing the
size of the subtree to be rebuilt. By Lemma 2.1, we can
perform the tree restructuring in expected time O(E[log S])
using an expected number of processors of O(E[S

logS
]). Since

the both of these functions are concave in S, we know that

E[log S] ≤ log(E[S]) and E[S
log S
] ≤ E[S]

log(E[S])
, so we will

concentrate on finding E[S].
For any node v ∈ PT (U), recall that nv is the number

of descendants of v in T (the full tree, not just PT (U)).
From the description of the tree restructuring procedure,
the probability of restructuring the subtree rooted at v is
at most 1/nv , and the number of nodes involved in such a
restructuring would be nv . Therefore,

E[S] ≤
∑

v∈PT (U)

1

nv
· nv = |PT (U)| ≤ |U | log n,

which is exactly the bound we need to prove our theorem.
There is one problem with this construction, as exempli-

fied by the following case: consider many additions to the
right side of a tree. When the left side of the tree is ini-
tially created, the tree has a certain number of nodes, say
N , and the set of nodes containing shortcut information is
determined from this value (i.e., the nodes with shortcut
information are those whose subtrees have depth at least
log logN). Now after additions to the right side, there are
n > N nodes in the tree, and if the left side of the tree has
not been rebuilt, there are shortcuts on nodes with subtrees
of less than log log n depth. However, for shortcuts to ex-
ist on nodes with subtrees of less than 1

2
log log n depth, the

tree must have grown so that n > N logN — if the tree grows
this much, it will be entirely rebuilt (including the left side)
with high probability.

Deletions can be handled similarly, and will be com-
pletely described in the full paper. This section can be
summarized by the following theorem.

Theorem 2.3 Given a RBSTS and a set U of leaves, we

can (a) identify the parse tree for U and activate |U| log n
log(|U| logn)

processors, (b) add new leaves at the positions of U , or (c)

delete the leaves in U , all in expected time O(log(|U | log n)),
using O(|U| log n

log(|U| log n)) processors. In all cases, a valid RBSTS
is output with high probability.

3 Incremental List Prefix

Before considering the more difficult problem of incremental
tree contraction, we introduce the ideas that we will be using
by considering the easier problem of incremental list prefix
sum. The incremental list prefix problem is the prefix sum
problem, where the input is a linked list of nodes containing
the input values (we use this terminology rather than “list
ranking” to avoid confusion with the fact that list ranking
usually refers to computing suffix sums). We will see that
this problem is easy, given the dynamic random splitting
tree methods of the previous section.
To solve the incremental list prefix problem, we main-

tain a RBSTS in which the linked list nodes are the leaves
of the RBSTS, and we maintain additional information at
each node of the RBSTS. In particular, any internal node v
of the RBSTS corresponds to a sub-list of values from the
maintained linked list (i.e., the leaves of the subtree rooted
at that node), and we store the sum of all the values in that
sub-list at the internal node (call this SUMv). Given this
information, it is easy to answer in parallel requests for the
prefix sum at a set of nodes U .
In particular, we first identify the parse tree PT (U) for

the set U , as described in the preceding section. Next we will

build a secondary parse tree, P̂ T (U), that is an extension
of PT (U) (this tree is really a conceptual help, and doesn’t
have to actually be constructed). Every node v ∈ PT (U)
has two children in the full tree T , call them w1 and w2, at
least one of which must be in PT (U). If one of the children,

say w1, is not in PT (U) we add w1 as a child of v in P̂ T (U)

— w1 is a leaf node of P̂ T (U), and we give it the value
SUMw1 . In effect, this one leaf node replaces the entire
subtree rooted at w1 as far as this parse tree is concerned.

The extended tree P̂ T (U) has at most twice as many nodes

as PT (U), so |P̂ T (U)| = O(|PT (U)|).
To compute all the requested prefix sum values, first use

the Euler tour technique to obtain an ordered list of the
leaves of P̂ T (U). This requires O(log |P̂ T (U)|) time and
O(|P̂ T (U)|) work. Due to the way that P̂ T (U) was con-
structed, performing the standard prefix sum algorithm on
this list will give the desired prefix sums for the nodes in U .
The complexity of this step is the same as the complexity
of computing the list of leaves (and in fact could be done
as a side-effect of the Euler tour computation), so once the
parse tree is identified, the prefix sums can be computed in
deterministic time O(log |PT (U)|) with O(|PT (U)|) work.
It remains to be seen how to exactly maintain the SUMv

values, which we now describe. When a sub-tree is rebuilt,
computation of the SUMv values can be done by performing
a tree contraction and expansion on the re-built tree. For
a size S tree, this can be done in O(log S) time using O(S)
work. In the RBSBS maintenance routines, we saw that
E[S] ≤ |U | log n, so this step can be done in O(log(|U | log n))
expected time, with O(|U| logn

log(|U| log n)) processors. In addition,
whenever leaf values are changed we need to recompute all
the SUMv values on the path from the updated leaves to
the root. However, this can easily be done by performing a
tree contraction and expansion on the extended parse tree

P̂ T (U).
The results of this section can be summed up in the fol-

lowing theorem.

Theorem 3.1 We can perform a set of concurrent queries
or updates on a set of nodes U of our incremental list pre-
fix data structure in O(log(|U | log n)) expected time using
O(|U| logn

log(|U| log n)) processors.

Note: Notice that if |U | = O(1) then the update is per-
formed in O(log log n) expected time using O(log n

log logn
) pro-

cessors.

4 Dynamic parallel tree contraction

The incremental tree contraction algorithms that we de-
sign are based on the parallel tree contraction algorithm
of Kosaraju and Delcher [11] (also see [9] for a textbook
description of tree contraction). This algorithm operates
by finding an Euler tour of the expression tree, performing
a list ranking to order the leaves of the tree from left to
right, and then repeatedly performs a rake on the leaves in
odd numbered positions of this ordering. To rake a leaf,
both the leaf and it’s parent are removed from the tree, and
the value of the leaf’s grandparent is updated to reflect the
removal of the these two nodes. Since only leaves in odd
numbered positions are raked by this algorithm, it is guar-
anteed that no two sibling with both try to simultaneously
rake and remove their common parent. Notice that in this
step, both a leaf and an internal node are removed from the
tree, which is why the tree size is reduced at such a rapid
rate. After this step, only half of the original leaves remain,
and the process is repeated using the leaves in odd numbered
positions on this new, smaller set of leaves. Repeating this
O(log n) times reduces the tree to a single node. Kosaraju
and Delcher show how to update the sibling label during a
rake so that after the entire procedure the single remain-
ing node is labeled with the value of the entire expression
tree. For a tree with n nodes, the contraction takes a total
of O(log n) time with O(n/ log n) processors. This process
is known as the CONTRACTION phase of the parallel tree
contraction process.
Most tree contraction algorithms require a second phase,

the EXPANSION phase. The EXPANSION phase can be
viewed as the logical reversal of the CONTRACTION phase.
In particular, the rake operations are done in reverse order,
with values propagating down the tree from the root. After
the EXPANSION phase, the original tree is entirely recon-
structed, with each internal node labeled with the value of
the sub-expression rooted at that node. For complete de-
tails, see [11].

4.1 Overview of dynamic parallel tree contraction

We consider a dynamic binary tree T of ≤ n nodes and
unbounded depth. We define a procedure, namely the in-
cremental parallel tree contraction algorithm, which incre-
mentally processes requests to modify or query T , where the
requests can be any of the following.

• Add two new children below a current leaf.
• Delete two leaf children of a node.
• Modify labels of internal nodes or leaves of T .

• Processes parallel tree contraction queries that recom-
pute values at specified nodes.

Each modification or query is with respect to a set of parallel
update requests specified at a set of nodes U in T .
The dynamic parallel tree contraction algorithm main-

tains a contraction parse tree PT with leaves that corre-
spond to the nodes of the expression tree T . The updates
will be done on the subtree PT (U) induced from PT con-
sisting of the paths from the root to each node in U. Again,
note that PT (U) denotes exactly those nodes that may be
wounded by an update request. These updates can cause
the incremental tree contraction algorithm to add or delete
at most U nodes. Our final result is stated below, which we
will prove in the next subsection.

Theorem 4.1 The dynamic parallel tree contraction algo-
rithm takes O(log(|U | log n)) expected parallel time, using
O(|U| log n

log(|U| log n)) processors.

4.2 Details of Dynamic Parallel Tree Contraction

In this section we extend the ideas of a RBSTS to the more
complex problem of incremental tree contraction. First, con-
sider a randomized version of the tree contraction algorithm
of Kosaraju and Delcher [11] that works as follows. First,
create a list of the leaves of the tree T in left to right or-
der. Create a RBSTS (call it PT) for the set of leaves, and
we will use the RBSTS to guide the sequence of rakes on
T . In particular, we consider the set S of nodes of the RB-
STS that have two leaf nodes (in PT) as children. Let L be
the set of left children from S, and we will rake the corre-
sponding nodes in the original tree T . Now we remove all
nodes in S from PT , making each exposed parent node cor-
respond to the unraked right child. Similar to Kosaraju and
Delcher’s algorithm, this can never rake two siblings in one
time step, so is a valid rake sequence. Furthermore, since
one level of PT is removed at each step, the number of par-
allel steps is exactly the depth of PT , which has expected
value O(log n). It should be noted that by first raking sub-
trees of size O(log n) consecutive nodes sequentially, using
O(n/ log n) total processors, we can make this an expected
work-optimal tree contraction algorithm. We can turn this
into an incremental algorithm by maintaining the RBSTS
as described in Section 2.
We maintain a second data structure called the rake tree

(denoted RT) to keep track of how the tree evaluation labels
are manipulated by the tree contraction algorithm. Note
that in the list prefix data structure, the required computa-
tions are easily derived from the RBSTS; however, for tree
contraction this is not the case. In tree contraction, we must
keep track of labels of internal nodes of T , which do not even
exist in the RBSTS (recall that only leaves of T are repre-
sented in the RBSTS). For incremental tree contraction, the
rake tree exactly reflects the changes to internal node labels
that need to occur in order to heal a wounded tree.
Consider a single rake of the original tree contraction al-

gorithm to be in two parts. Let v be the node we are raking,
and let p denote its parent and w denote its sibling. First,
we do what is called a “small-rake”, where v is raked into
its parent p, and the label of p is updated accordingly. Sec-
ondly, p is removed by merging it with w, and the label of w
is updated to reflect this contraction. We expand rakes like
this so that all operations on labels during the tree contrac-
tion phase are binary. The rake is now a binary operation

on the labels of v and p, followed by a binary operation on
the label of w and the new label of p.
The rake tree is structured as follows. Any time the tree

contraction algorithm modifies a node’s label, it must be by
a binary operation on two labels (by the preceding para-
graph) so join the rake tree nodes corresponding to those
two labels under a single parent node, and the parent node
corresponds to the new label produced by the binary op-
eration. The node is then labeled with the function that
produces the new label from the old ones. This is clearly
a binary tree, and there is a one-to-one correspondence be-
tween the nodes of this tree and all the labels assigned by
the tree contraction algorithm. Since each internal node of
RT corresponds to a rake operation, and each left child in
the RBSTS also corresponds to a rake operation, we main-
tain links between the rake tree nodes and the nodes of the
RBSTS. Thus by identifying a wound in the RBSTS, we
can in parallel quickly discover the corresponding wounded
nodes in RT .
Clearly, a tree evaluation on the rake tree will compute

the values of the labels of all nodes in T at all times during
the tree contraction process. To be able to perform concur-
rent updates, we will have to show that the functions label-
ing the nodes of RT are valid tree contraction operations,
and we show this in the proof of the following theorem.

Theorem 4.2 We can perform a set of updates on a set of
nodes U of our incremental tree contraction data structure

in O(log(|U | log n)) expected time using O(|U| logn
log(|U| log n)) pro-

cessors. We can also perform a single update with a single
processor in O(log n) time.

Proof : In this proof, we prove the more difficult of the state-
ments in the theorem — that concurrent updates may be
done in parallel. The sequential algorithm is much simpler:
just start at the leaves and propagate the simple changes
that are required toward the root.
We perform a parallel update on our data structure in

two phases. First, we must locate the wound (i.e., PT (U))
in the RBSTS. This phase proceeds exactly as in the incre-
mental list ranking problem. In particular, adding a new
leaf to the tree T involves adding a new leaf to the RBSTS,
which is accomplished as described in Section 2. It is in this
phase that processors get allocated to the parts of the tree
that will be changing, exactly as in the case of the list prefix
problem. These processors remain activated after this phase
to complete the relabeling described below. It is trivial to
make the corresponding updates to RT , once PT (U) has
been activated.
Note that if the request to the incremental algorithm is

either a query or simply a node label update, then there
are no structural changes to the RBSTS or the rake tree.
In this case, the first stage simply identifies the wound and
activates processors for the second phase.
When the first phase is over, we have done all the re-

quired updates to the structure of the RBSTS and the rake
tree, but the labels in RT may need to be updated. Let W
denote the set of all wounded nodes in RT , and let RT (W)
denote the subtree of RT consisting of all paths from a node
of W to the root of RT . For a node v not in RT (W), nei-
ther the node itself or any of its descendants have changed,
so the label of v can not be changed by this update. In other
words, all the changes in RT due to an incremental update
occur in the subtree RT (W).

For any node w in RT (W), we first make sure both of its
children are in RT (W). If they are not, then they are added
as new leaves of RT (W) — these leaves are labeled with their
values from the previous incremental step, and as we have
shown that these values cannot be changed in the current
step. It is clear then that evaluating the resulting tree will
give the correctly updated labels for all nodes in RT (W),
and thus all of RT will have correct labels. This can easily
be done sequentially in optimal O(|RT (W)|) time. We next
show that the tree evaluation can be done by parallel tree
contraction.
We consider the case of T being over a commutative ring

(which is the case for the vast majority of tree contraction
applications), like in the paper of Kosaraju and Delcher [11].
In such a case, the label at each node of the tree T consists of
an operation label (which never changes), and a pair (A,B).
The meaning of this label is that if x is the value of the
subtree rooted at this node, then Ax+B is the value of this
contracted node. Initially, all internal nodes are given the
pair (1, 0) as a label, and all leaves are given the pair (0, v),
where v is the value of that leaf in the expression tree.
There are three basic label manipulation functions that

label the internal nodes of RT . First, if p is an internal node
of RT with children v (the leaf being raked) and w, and
p corresponds to a “small-rake”, then the exact operation
depends on the ring operation opw labeling w in T . Let
(A,B) be the label of v and (C,D) be the label of w. Then if
opw is an addition, the function labeling node p takes (A,B)
and (C,D) as input, and produces label (C,CB+D). If opw
is a multiplication, then the function must produce label
(CB,D). Finally, if p is corresponds to a “small-compress”,
and has children v (the node in T being removed) and w
with labels (A,B) and (C,D), respectively, then the label
update function must produce the new label (AC,AD+B).
The important point to notice about all the label update

functions is that the function for each label component is
linear in the input components. Since composition of linear
functionals is associative, this is all we need in order to be
able to perform tree contraction on RT . Thus we can re-
compute all the changed labels of RT in O(log |RT (W)|) =
O(log(|U | log n)) time usingO(|RT (W)|

log |RT (W)|) = O(
|U| log n

log(|U| log n))

processors.

5 Applications of Dynamic Parallel Tree Contraction

Here we show that dynamic parallel tree contraction is a
broadly applicable technique for the design of dynamic par-
allel algorithms. Standard parallel tree contraction has been
shown to provide a basis for many efficient parallel algo-
rithms, and we can use many of the reductions to the tree
contraction problem in designing dynamic algorithms. The
following theorems are a sampling of the results derived us-
ing this technique.

Theorem 5.1 Incrementally maintaining the standard tree
properties, (such as preorder, number of ancestors), as well
as Eulerian tour and expression evaluation using our dy-
namic parallel tree contraction algorithm takes expected par-

allel time O(log(|U | log n)) using O(|U| log n
log(|U| log n)) processors.

Theorem 5.2 Incrementally maintaining least common an-
cestor and canonical forms of trees using our incremental
parallel tree contraction algorithm takes O(log(|U | log n)) ex-
pected parallel time using O(|U| log n

log(|U| log n)) processors.

6 Further Work

In a subsequent paper, we apply our dynamic parallel tree
contraction technique to various incremental problems on
graphs with constant separator size, for example: parallel se-
ries graphs, outerplanar graphs, Helin networks, bandwidth-
limited networks, etc. In these graph problems, we incre-
mentally maintain in parallel various properties, such as
coloring, minimum covering set, maximum matching, etc.
some of which are NP complete for general graphs.

References

[1] A. Aho, J. Hopcroft, and J. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley,
Reading, MA, 1974.

[2] D. Armon and J.H. Reif, “Strictly Polylog Time, Lin-
ear Space Algorithms for Nearest Neighbor Search and
Dynamic Separators in d Dimensions”, manuscript, Oct
1992

[3] R. F. Cohen and R. Tamassia. “Dynamic Trees and
Their Applications,” 2nd ACM-SIAM SODA, pp. 52–
61, 1991.

[4] R. Cole and U. Vishkin. “Deterministic Coin Tossing
with Applications to Optimal Parallel List Ranking”,
Inform. and Control, Vol. 70, pp. 32–53, 1986.

[5] G. N. Frederickson. “Ambivalent Data Structures for
Dynamic 2-Edge-connectivity and k Smallest Spanning
Trees”, FOCS, pp. 632–641, 1991.

[6] G. N. Frederickson. “A Data Structure for Dynamically
Maintaining Rooted Trees”, to appear in SODA, Jan.
1993.

[7] H. Gazit, G. L. Miller, and S. H. Teng. “Optimal Tree
Contraction in the EREWModel”, in Concurrent Com-
putations: Algorithms, Architecture, and Technology,
Plenum, New York, pp. 139–156, 1988.

[8] X. He and Y. Yesha. “Binary Tree Algebraic Computa-
tion and Parallel Algorithms for Simple Graphs”, Jour-
nal of Algorithms, Vol. 9, pp. 92–113, 1988.

[9] J. JáJá, An introduction to parallel algorithms,
Addison-Wesley, 1992.

[10] R. M. Karp and V. Ramachandran. “Parallel Algo-
rithms for Shared-Memory Machines”, in Handbook of
Theoretical Computer Science, Volume A: Algorithms
and Complexity, Jan Van Leeuwen, ed., The MIT Press,
pp. 869–943, 1990.

[11] S. R. Kosaraju and A. L. Delcher, “Optimal Par-
allel Evaluation of Tree-Structured Computations by
Raking”, Proc. 3rd Aegean Workshop on Computing,
Springer Verlag Lecture Notes in Computer Science,
Vol. 319, pp. 101–110, 1988.

[12] G. L. Miller and J. H. Reif. “Parallel Tree Contraction
Part 1: Fundamentals”, in Randomness and Computa-
tion, Vol. 5, S. Micali, ed., JAI Press, Greenwich, CT,
pp. 47–72, 1989.

[13] G. L. Miller and J. H. Reif. “Parallel Tree Contrac-
tion Part 2: Further Applications”, SIAM J. Comput.,
Vol. 20, No. 6, pp. 1128–1147, 1991.

[14] J. I. Munro, T. Papadakis, and R. Sedgewick. “Deter-
ministic Skip Lists”, SODA, pp. 367–375, 1991.

[15] J.H. Reif, P. Spirakis, M. Yung, ”Re-Randomization
and Average Case Analysis of Fully Dynamic Graph
Algorithms ”, manuscript, Oct, 1992.

[16] D. Sleator and R. E. Tarjan. “A Data Structure for
Dynamic Trees”, J. Comput. Sys. Sci., Vol. 26, pp. 362–
391, 1983.

