
Approximate Kinodynamic Planning Using L2-norm Dynamic

Bounds∗

John H. Reif† Stephen R. Tate‡

Abstract

In this paper we address the issue of kinodynamic motion planning. Given a point that
moves with bounded acceleration and velocity, we wish to find the time-optimal trajectory
from a start state to a goal state (a state consists of both a position and a velocity). As
finding exact optimal solutions to this problem seems very hard, we present a provably
good approximation algorithm using the L2 norm to bound acceleration and velocity. Our
results are an extension of the earlier work of Canny, Donald, Reif, and Xavier [1], who
present similar results where the dynamics bounds can be examined in each dimension
independently (they use the L∞ norm to bound acceleration and velocity).

Keywords: Motion planning, kinodynamic planning, approximation algorithms, robotics.

∗Supported in part by DARPA/ARO contract DAAL03-88-K-0195, Air Force Contract AFOSR-87-0386,
DARPA/ISTO contract N00014-88-K-0458, and NASA subcontract 550-63 of prime contract NAS5-30428.

†Department of Computer Science, Duke University, Durham, NC 27706
‡Department of Computer Sciences, University of North Texas, P.O. Box 13886, Denton, TX 76203. This

work was performed while the author was at Duke University.

1 Introduction

With the increasing use of industrial robots, the associated computational problems such as

planning and control are receiving a lot of attention. The basic foundation for motion planning

comes from geometric problems, such as finding a path for an object (robot) which avoids a set

of obstacles (known as the “Piano Movers’ Problem”) [12]. Even for the case of the robot being

a simple point, finding the shortest path through a set of objects can be very difficult in three

dimensions, but a fully polynomial approximation algorithm was given by Papadimitriou [10].

Unfortunately, these problems do not take into account the physical limitations of a real robot

(for instance, the shortest path between two points will usually involve an instantaneous change

in the direction of motion); furthermore, it is much more important to consider a path that

takes the shortest time rather than covering the shortest distance. With this in mind, the

problem of kinodynamic motion planning addresses these real-world issues.

Kinodynamic planning extends kinematic planning (avoiding a set of static obstacles) by

including dynamics (or dynamical) constraints, such as dynamics laws (e.g. f = ma) and

dynamics bounds (a maximum allowable acceleration amax and velocity vmax). In addition to

simply finding a trajectory between a start state and a goal state (a state consists of both a

position and a velocity), it is desirable to find the optimal trajectory, i.e., the trajectory that

takes the least amount of time. Dynamics bounds are given by bounding the norm of the vectors

that represent velocity and acceleration. As finding optimal trajectories is computationally

intensive, practical algorithms must focus on approximately optimal trajectories; specifically,

an approximation algorithm will find a trajectory connecting the start state and goal state that

requires time only slightly greater than the time required by the optimal trajectory. Previously,

an approximation algorithm was known when the dynamics bounds are stated in terms of the

L∞ norm [1]; however, while such a case is easier to show (due to the independence of the

dimensions), it relies on somewhat artificially imposed properties, such as the orientation of

the coordinate axes.

In this paper, we present an approximation algorithm that uses the L2 norm for dynam-

ics bounds; our results parallel those of Canny, Donald, Reif, and Xavier [1], but the proof

techniques are very different. In independent work concurrent with the research presented in

1

this paper, Donald and Xavier have also developed an approximation algorithm with dynamics

bounds stated in terms of L2 norms [5].

Optimal kinodynamic planning seems to be very hard in practical situations; the only exact

solutions to the optimal kinodynamic planning problem are for one or two dimensions. In fact,

in three dimensions (or more) finding a minimum distance path has been shown to be NP-

hard [3], and this proof can be used to show that finding the exact solution for kinodynamic

planning in ≥ 3 dimensions is NP-hard. However, as with many NP-hard problems, it is
possible to find an approximately optimal solution in polynomial time; as we show here, the

goodness of the approximation can be bounded by a proven scalar multiple. In other words, if

the optimal solution is a robot trajectory that takes time T , then for any given ε > 0 we can

find a solution that takes time at most (1 + ε)T by a search algorithm whose running time is

polynomial both in the complexity of the environment and in 1ε .

In real life there are additional problems to address (such as external forces) that we do not

address in this paper. One additional real-world property that we do address is the inability

of real robots to navigate accurately at high speeds. To this end, we use the notion of “safe”

and “also-safe” trajectories introduced in [1]; basically, this concept uses an affine mapping

from speed (i.e., magnitude of velocity) to distance that bounds how close the robot may be to

an obstacle. Exact definitions of “safe” and “also-safe” trajectories can be found in section 5.

The robot model that we use is simply a point robot with unit mass; non-point robots can be

handled easily by “growing” the obstacles to reflect the shape of the robot. It should be noted

that the approximation algorithm we present is extremely simple; the complex equations found

in this paper are used exclusively for proving the correctness of the algorithm.

1.1 Summary of Previous Work

Much of the previous work in motion planning and related problems was mentioned above. The

motion planning problem has been studied from a variety of movement constraints; in addition

to the problem of kinodynamic motion planning as defined above, Fortune and Wilfong [6]

examine the problem of motion planning where the moving object has a bounded turning

radius. This problem was further examined by Jacobs and Canny, who present a polynomial

time approximation algorithm for finding such a path [7].

2

A problem which can be viewed as one dimensional kinodynamic planning (with moving

obstacles) is examined by Ó’Dúnlaing [8], who gives an algorithm for the exact optimal solution.

A recent result of Canny, Rege, and Reif gives a PSPACE algorithm that finds an exact solution

for the two-dimensional case [2]; unfortunately, finding exact solutions in higher dimensions with

polynomial time algorithms is extremely unlikely as Canny and Reif have shown the shortest

path problem (in three or more dimensions) to be NP-hard [3]. Polynomial time approximation

algorithms for arbitrary (but fixed) dimensions are examined in a variety of papers [1], [4], [5],

[11], [13] (Note, however, that [11] and [13] do not prove bounds on the goodness of their

approximation).

2 Preliminaries

2.1 Definitions and Terminology

Before starting the technical material, we will present the definitions and terminology that are

used in this paper. All vector variables will be typeset in boldface, to separate them from

scalars which are typeset in standard math italics. For example, v is a vector (of reals), and t

is a scalar real. First and second derivatives are denoted by superscripted dots as in standard

control theory literature. For example, if p(t) is a (twice differentiable) function, then ṗ(t) is

its first derivative, and p̈(t) is its second derivative.

Consider a point traveling through d-dimensional Euclidean space. By a trajectory Γ, we

mean both the velocity and position of the path that the point takes. By a point on a trajectory,

we mean both the position and velocity at a particular time; for example, the endpoints can

be given by (p0,v0) and (p1,v1), where p0 and p1 are the starting and ending positions,

respectively, and v0 and v1 are the starting and ending velocities. If trajectory Γ takes time T ,

we say that Γ is a time T trajectory. For a subscripted trajectory Γr, we denote the position at

time t by pr(t), the velocity by ṗr(t), and the acceleration by p̈r(t). The change (from time 0)

in any of these functions is represented by a delta prefix; for example, the change in position is

∆pr(t) = pr(t)− pr(0). Similar definitions hold for ∆ṗr(t) and ∆p̈r(t). The environment is a
set of polyhedral obstacles in d-dimensional space, where d is considered to be a small constant.

The 2-norm of a vector v is written as ‖v‖2, and the infinity norm is ‖v‖∞. Hereafter, if

3

g

s

Figure 1: An example grid search problem

we write simply ‖v‖ without a subscript, the 2-norm should be understood.
The set of obstacles in the environment is represented by E . All obstacles are polyhedral

and require a total of n bits to encode. Furthermore, it is assumed that the space in which the

robot may move is bounded by a ball of diameter D.

2.2 Outline of Algorithm and Proof

Consider the following search problem: we are given a subgraph of a d-dimensional grid-graph;

in other words, a grid-graph with some vertices missing. There are two distinguished vertices

s and g, and we want to know if there is a path from s to g (an example in two dimensions

is shown if figure 1). This problem is easy to solve using depth-first search on the graph; a

minimum distance path from s to g can be found (if a path exists) by using breadth-first search.

The problems we are interested in for this paper are similar, but involve searching a con-

tinuous space. By a discretization of the environment with grid-length g, we are referring to

a graph constructed from the environment as follows. First, construct a graph with nodes

for each point (i1g, i2g, ..., idg) in the environment, where each ij is an integer; since the en-

vironment is bounded by a ball of diameter D, the graph is finite. Edges are added between

4

neighboring vertices to form a grid-graph. Finally, the vertices that lie inside any obstacle are

removed from the graph.

The graph of figure 1 is such a graph — the missing parts of the grid correspond to obstacles.

Simple reachability problems can be answered using this graph: by making g small enough we

can guarantee that there exists a continuous path in the environment if and only if there exists

a path on the constructed grid-graph, and a breadth-first search on the grid-graph gives an

approximately minimum distance path in the continuous environment. Unfortunately, even this

simple reachability problem requires a grid whose size grows exponentially with the algebraic

complexity of the environment. We use a variant of this strategy that requires only a polynomial

size graph (described fully in section 3) to solve approximate kinodynamic planning.

The proof of the correctness of our algorithm is based on a tracking theorem (theorem 4.2).

This theorem states that for any continuous trajectory Γe, there exists a trajectory Γa that

travels only between grid-points of our discretization and is always close (in both position

and velocity) to the continuous trajectory Γe. Thus, the minimum time continuous trajectory

has a corresponding approximating trajectory in the constructed grid, and this approximating

trajectory can be found by simple breadth-first search. Since any discovered trajectory between

grid-points is also a valid continuous trajectory, we never find an invalid trajectory, and the

correctness of the approximation algorithm follows.

The proof of the tracking theorem is rather involved, so we outline it here. First we show

that any continuous trajectory can be stretched in time so that it takes slightly longer, but the

new trajectory meets a smaller acceleration bound (lemma 4.2). Thus, when approximating the

slowed-down continuous trajectory, the additional acceleration available to the approximating

trajectory can be used to reach a grid-point that is close to the continuous trajectory. Unfor-

tunately, there may still be some position error build-up while approximating the continuous

trajectory, so we alternate phases of approximating with phases of error correction. A slightly

modified continuous trajectory that doesn’t change velocity during the error correction phase

is shown to exist (lemma 4.3), and this trajectory is used in the approximating phases instead

of the original one. By making the approximating and error correcting phases short enough, we

show that the constructed trajectory is still a good approximation of the original continuous

5

trajectory, which completes the proof of the tracking theorem.

3 Constructing a Grid

For our kinodynamic planning approximation, we build a grid of points in state space, rather

than just in the position as outlined above. The approximation proceeds in time steps of length

τ as follows: At all times iτ (i an integer), the velocity that is desired at time (i+1)τ is chosen

from the neighbors of the current state, and the trajectory in the time interval (iτ, (i + 1)τ)

is a linear transition to the desired next velocity (i.e., constant acceleration). Notice that

the position at time iτ and the selected velocity transition completely determine the position

at time (i + 1)τ . For such a discrete step method, we must show that it is possible to stay

reasonably close to an exact path by this method of moving between neighboring grid-points.

Note that while we still refer to our discretization as a grid, it is not a regular grid-graph in

position space — the actual structure is a grid-graph in velocity space, along with the positions

that correspond to moves on this velocity grid.

Since we want to define a finite grid, at any time step there must be finitely many choices

for the change in velocity over the next time interval. If we let v1,v2, ...,vk be these vectors

(called choice vectors), then for each vector vi we can determine θi, the smallest angle between

vi and any other choice vector. Remember that these vectors are actually change in velocity

vectors, so the velocity at time (i + 1)τ is ṗ(iτ) + vj for the chosen vector vj . We always

include the zero vector (0) in a set of choice vectors to denote that it is possible to stay at

the current velocity during a time interval; thus the set of choice vectors referred to above is

V = {0,v1,v2, ...,vk}. We now argue that θi must vary with ε if we bound the 2-norm of the
acceleration; this implies that the number of choice vectors must grow as ε decreases.

Assume that the angles do not vary with ε, and pick a particular non-zero θi. Let vm

be a choice vector that makes angle θi with vi. Consider a continuous path with maximum

acceleration at an angle that exactly bisects the angle made by vi and vm; it should be obvious

that by making ε sufficiently small, the exact path taking time T simply outruns any path made

up of choice vectors taking time (1 + ε)T . In other words, any approximating path will fall

farther and farther behind the exact path. In particular, in two (or more) dimensions we can

6

show that there needs to be Ω(1ε) choice vectors to approximate within an ε factor of optimal.

Now we examine how to vary the angle between choice vectors with ε. The first method

that comes to mind is to simply use maximal acceleration vectors at angles that are evenly

spaced (and varying with ε); unfortunately, this gives rise to a “grid” that grows exponentially

with the number of time steps, and in fact does not even form a finite graph. The method we

actually use is to superimpose a square grid on top of this set of choices, and then using parts

of this grid with a new neighbor relationship, we have a grid that grows polynomially with the

number of time steps. For a small enough square grid, we can track velocities closely; a more

formal presentation of this follows.

Definition 3.1 A set of choice vectors {0,v1,v2, ...,vk} is called δ-dense (0 < δ < 1) if for any
non-zero vector v there exists a non-zero choice vector vi such that

vi · v
‖vi‖‖v‖ ≥ δ.

What this means geometrically is that given any vector v, you can always find a choice

vector vi such that the angle between v and vi is small (less than or equal to arccos δ).

The easiest way to obtain a δ-dense set of vectors is to space unit vectors evenly with respect

to angles. As mentioned above, this is not good enough for our application, so we consider a

square grid with small grid length. A set of “almost unit length” (i.e., within one grid length

of unit length, but never more than unit length) choice vectors can be constructed using these

grid-points while assuring that the set is δ-dense. A set of (1− ε
4(1+ε))-dense choice vectors on

a square grid with grid-length ε4 (exactly the conditions required by the following theorem) is

illustrated in figure 2 for the specific case of two dimensions and ε = 1
2 . The dots represent the

points of the square grid, and the circle is a unit radius circle drawn for reference.

Theorem 3.1 For 0 < ε ≤ 1, let V = {0,v1,v2, ...,vk} be a set of (1 − ε
4(1+ε))-dense choice

vectors that are “almost unit length” (as defined above) on a square grid with grid-length ε4 . Then

for any vector v with ‖v‖ ≤ 1 + 1
1+ε , there is a choice vector vc with ‖v − vc‖ ≤ 1.

Proof: Let v be any vector with ‖v‖ ≤ 1 + 1
1+ε . Since V = {0,v1,v2, ...,vk} is a set of

7

Figure 2: Possible choice vectors in two dimensions for ε = 1
2 .

(
1− ε

4(1+ε)

)
-dense choice vectors, there exists a vc ∈ V such that

v · vc ≥
(
1− ε

4(1 + ε)

)
‖v‖‖vc‖. (1)

We are interested in finding ‖v − vc‖. A simple geometric identity states that

‖v − vc‖2 = ‖v‖2 + ‖vc‖2 − 2v · vc = ‖v‖2 + ‖vc‖2 − 2‖v‖‖vc‖ cos θ,

where θ is the angle between v and vc. Fixing ‖vc‖ and θ and viewing the above equation
as a polynomial in ‖v‖, differentiating with respect to ‖v‖ shows that the minimum value of
‖v − vc‖2 occurs when ‖v‖ = ‖vc‖ cos θ. For all ‖v‖ < ‖vc‖ cos θ, the maximum value for
‖v − vc‖2 occurs at the smallest possible value for ‖v‖; i.e., at ‖v‖ = 0. When ‖v‖ = 0, it is
obvious that ‖v − vc‖ = ‖vc‖ ≤ 1.
It is also seen that for all ‖v‖ > ‖vc‖ cos θ, the quantity ‖v − vc‖2 is monotonically in-

creasing, so the maximum value occurs at the largest allowable value for ‖v‖; in other words,
when ‖v‖ = 1+ 1

1+ε . Similar arguments show that ‖v− vc‖2 is maximized when ‖vc‖ = 1− ε4
and cos θ = 1− ε

4(1+ε) . In other words, for all v such that ‖v‖ ≤ 1 + 1
1+ε , there exists a choice

vector vc such that

‖v − vc‖2 ≤
(
1 +

1

1 + ε

)2
+

(
1− ε
4

)2
− 2

(
1 +

1

1 + ε

)(
1− ε
4

)(
1− ε

4(1 + ε)

)
.

8

Algebraic manipulation reveals that the right side of the above inequality is equivalent to

1− ε(8 + 3ε− ε
3)

16(1 + ε)2
.

In this form, it is obvious that for all valid ε (i.e., all ε satisfying 0 < ε ≤ 1), ‖v − vc‖2 ≤ 1.
This completes the proof of the theorem. 2

This theorem is used to show that with a certain finite set of choice vectors for the change

in velocity, any exact trajectory can be closely tracked using only velocity changes from the

set of choice vectors; the direct application of this theorem can be found in the text following

lemma 4.3.

To see how trajectories are constructed from a set of choice vectors, let τ denote the length

of one discrete time interval. Consider a trajectory with an acceleration bound of a. The most

that the velocity can change during one time interval is aτ , so we consider this to be one “unit

length”; it is obvious that theorem 3.1 applies using this as one unit, and this fact is made

explicit in the following corollary.

Corollary 3.1 For 0 < ε ≤ 1, let V = {0,v1,v2, ...,vk} be a set of (1 − ε
4(1+ε))-dense choice

vectors that are “almost aτ length” on a square grid with grid length ε4aτ . Then for any vector v

with ‖v‖ ≤
(
1 + 1

1+ε

)
aτ , there is a choice vector vc with ‖v − vc‖ ≤ aτ .

Now consider a trajectory made up of N time intervals. Let i : {0, 1, ...,N − 1} → Z+

be an indexing function such that at the beginning of time interval t, we decide to use choice

vector vi(t). First, a preliminary lemma shows how the position component of a trajectory is

affected by the schedule of choice vectors taken. The proof of the lemma is omitted, but is

trivial; simply integrating over the velocity function defined by the indexing function gives the

formula in the lemma. Notice that the velocity at any time kτ is given by ṗ(0) +
∑k−1
t=0 vi(t).

Lemma 3.1 If i is an indexing function as above, then the total change in position is given by

∆pa = ṗ(0)Nτ + (N − 1
2
)τ
N−1∑
k=0

vi(k) − τ
N−1∑
k=0

kvi(k). (2)

9

4 Tracking in the Absence of Obstacles

Before talking about trajectories that avoid obstacles, we must first show how paths can be

constructed on our grid. To simplify this, arbitrary trajectories are shown to be easily approx-

imated by a series of moves on the grid, with no obstacles in the environment.

The following lemma is stated in general terms, and will be used in several ways. Applica-

tions will be discussed after the proof of the lemma.

Lemma 4.1 Let f : [0, T]→ R be a continuous real-valued function on the closed interval [0, T].
If we know that f(0) = f0, f(T) = f0 + ∆f , and that |df(t)dt | ≤ a for all t ∈ [0, T], the following
inequalities must hold:

f0T +
∆fT

2
+
(∆f)2

4a
− aT

2

4
≤
∫ T
0
f(t)dt ≤ f0T + ∆fT

2
− (∆f)

2

4a
+
aT 2

4

Proof: First we argue that for any function f(t) satisfying the end-point and derivative

constraints of the lemma, the following inequalities must hold for all times t in the interval

[0, T].

f(t) ≤ f0 + at (3)

f(t) ≤ f0 +∆f + a(T − t) (4)

Consider equation (3). If the inequality does not hold, then there exists a time t1 such that

f(t1) > f0 + at1, and by the mean value theorem of derivatives there must be some time t2 in

the interval [0, t1] such that f
′(t2) = f(t1)−f0

t1
> a. This contradicts our bound on the derivative

as stated in the lemma, so cannot be true; therefore, equation (3) must hold. The argument

for equation (4) is similar.

Since any function that satisfies the constraints of the lemma must satisfy both upper

bounds of equations (3) and (4), it must satisfy the least of the two at any particular time. Let

g1(t) = f0 + at and g2(t) = f0 +∆f + a(T − t), and define g(t) = min{g1(t), g2(t)}. A simple
check of g(t) shows that it satisfies the constraints of the lemma, and by the above argument

must be the point-wise maximum of all valid functions.

Since g(t) is the point-wise maximum of all valid functions, the definite integral of g(t)

over the interval [0, T] must also be greater than that of any other valid function. Actually

10

calculating this integral gives the upper bound stated in the lemma. The proof of the lower

bound is similar. 2

The most immediate and obvious result is stated in the following corollary.

Corollary 4.1 If we let Γ be a one dimensional time T trajectory from starting state (p(0), ṗ(0))

to goal state (p(T), ṗ(T)) that obeys acceleration bound a, then we can say that

p(T) ≤ p(0) + ṗ(0)T + ∆ṗ(T)T
2

− (∆ṗ(T))
2

4a
+
aT 2

4

and

p(T) ≥ p(0) + ṗ(0)T + ∆ṗ(T)T
2

+
(∆ṗ(T))2

4a
− aT

2

4
.

Further uses of lemma 4.1 will occur when we bound the norm of the integral of vector

functions.

The following lemma explains how we can reduce the acceleration bound of a trajectory and

still meet the same endpoints. This occurs with a corresponding increase in the time required

by the trajectory. Henceforth, assume that whenever ε is mentioned, it satisfies 0 < ε ≤ 1.

Lemma 4.2 Given a time T trajectory Γr from (pr(0),0) to (pr(T),0) with acceleration bound

a, then there exists a trajectory Γq with acceleration bound
a

(1+ε)2
and the same endpoints, but

takes time (1 + ε)T .

Proof: Simply let p̈q(t) = p̈r(
t
1+ε)/(1+ε)

2 with ṗq(0) = 0 and pq(0) = pr(0). The verification

that the ending conditions are met is now a simple calculus problem, and the details are omitted.

2

The problem we must now overcome is that given the endpoints of a trajectory, in general

we know very little about what happens between the endpoints. The next lemma is designed

to solve this problem. Example trajectories as constructed by the lemma are shown in figures 3

and 4. These examples are one dimensional trajectories, and the horizontal axis represents

time.

Lemma 4.3 If we let c =
√
9+8ε−1
2(1+ε) (note that c < 1 for all valid ε, and c → 1 as ε → 0),

then given an arbitrary time T trajectory Γr with acceleration bound
a

(1+ε)2 , there exists a time T

11

pq(t)

pu(t)

ps(t)

pr(t)

Figure 3: Position graphs for trajectories in lemma 4.3.

trajectory Γq which has the same endpoints but does not change velocity for the last time interval

of length (1− c)T . Furthermore, Γq meets acceleration bound a
1+ε .

Proof: We define a temporary trajectory Γs by specifying that ps(0) = pr(0), and then

defining the velocity to be a “time-compressed” version of ṗr(t). More specifically,

ṗs(t) =

{
ṗr(

t
c) , for 0 ≤ t ≤ cT

ṗr(T) , for cT < t ≤ T

It is easy to see that ps(T) = (1−c)pr(0)+cpr(T)+(1−c)T ṗr(T), and that the velocity at
both endpoints of Γs is the same as the corresponding velocities of Γr. Now we define another

12

ṗq(t)

ṗu(t)

ṗs(t)

ṗr(t)

Figure 4: Velocity graphs for trajectories from lemma 4.3.

auxiliary trajectory Γu by setting the initial position to zero and letting

ṗu(t) =



kt for 0 ≤ t ≤ cT

2
k(cT − t) for cT2 < t ≤ cT
0 for cT < t ≤ T

where k is the constant vector 4(1−c)(cT)2 [∆pr(T)− ṗr(T)T]. In other words, Γu is a bang-bang
trajectory, used for correction of Γs. We can bound ‖k‖:

‖k‖ = 4(1 − c)
(cT)2

[‖∆pr(T)− ṗr(T)T‖] = 4(1− c)
(cT)2

‖
∫ T
0
[∆ṗr(t)−∆ṗr(T)]dt‖

≤ 4(1− c)
(cT)2

∫ T
0
‖∆ṗr(t)−∆ṗr(T)‖dt

13

Since d‖∆ṗr(t)−∆ṗr(T)‖dt ≤ a
(1+ε)2

, we can apply lemma 4.1 to get

‖k‖ ≤ 4(1− c)
(cT)2

[
‖∆ṗr(T)‖T

2
− ‖∆ṗr(T)‖

2(1 + ε)2

4a
+

aT 2

4(1 + ε)2

]

Maximizing the part in brackets (and noticing that ‖∆ṗr(T)‖ ≤ aT
(1+ε)2), we get

‖k‖ ≤ 2(1− c)a
c2(1 + ε)2

.

Now we can define the trajectory Γq by ṗq(t) = ṗs(t)+ṗu(t), and pq(0) = pr(0). Notice that

by the above definitions, ṗq(0) = ṗr(0) and ṗq(T) = ṗr(T). To verify that the ending position

of Γq is the same as the ending position of Γr, notice that pu(T) = (1− c) [∆pr(T)− T ṗr(T)],
and adding this to ps(T) shown above, the resulting simplified expression shows that indeed,

pq(T) = pr(T).

To calculate the acceleration bound of Γq, notice that

‖p̈q(t)‖ = ‖p̈s(t) + p̈u(t)‖ ≤ ‖p̈s(t)‖+ ‖p̈u(t)‖ ≤ ‖p̈s(t)‖+ ‖k‖.

Using the previously calculated bound for ‖k‖ and noticing that ‖p̈s(t)‖ = ‖p̈r(t/c)‖
c ≤ a

c(1+ε)2 ,

we see that ‖p̈q(t)‖ ≤ 2−c
c2

a
(1+ε)2 . Substituting c =

√
9+8ε−1
2(1+ε) , we find that

2−c
c2
= 1 + ε, so

‖p̈q(t)‖ ≤ a
1+ε . 2

Now we examine how closely we can track a trajectory constructed as in lemma 4.3. First

we consider tracking only the velocity; staying close to the desired velocity keeps the position

within a tolerable error, and the last part of the interval (the last time interval of length (1−c)T
which is called the adjustment interval) is used to correct the position while causing no net

change in velocity.

The first step is to divide the time T interval into a series of discrete intervals, each of

length τ . For the current velocity, consider a set of choice vectors as described in corollary 3.1

with the unit distance being aτ . Assuming that the approximation is within aτ of the desired

velocity at the beginning of an interval, and since the desired trajectory obeys acceleration

bound a
1+ε , the exact velocity at the end of the interval will be no more than (1+

1
1+ε)aτ away

from the original approximation. Now using the result of corollary 3.1, we can pick a choice

vector that results in a final approximation velocity within aτ of the desired velocity.

14

From the above argument, it should be obvious that if our approximation velocity initially

starts within aτ of the desired velocity, then at every time step the approximation velocity can

be kept within aτ of the desired velocity. This is what we mean by being able to closely track

the velocity of the given trajectory; now we examine how much the position may be in error

from blindly following only the velocity of the given trajectory.

First, a better estimate of how closely the velocity is tracked is needed. Theorem 3.1 says

that at the times iτ (i an integer), the velocity of the approximating trajectory is within aτ

of the velocity of the given trajectory, but what happens between these time instances? A

maximizing argument (very similar to that used in the proof of lemma 4.1) shows that at all

time instances the error is no more than 32aτ .

Letting Γe and Γa denote the exact and approximating trajectories, respectively, the error

in position displacement can be bounded by

‖
∫ T
0
ṗe(t)dt−

∫ T
0
ṗa(t)dt‖ = ‖

∫ T
0
[ṗe(t)− ṗa(t)] dt‖ ≤

∫ T
0
‖ṗe(t)− ṗa(t)‖dt

≤
∫ T
0

3

2
aτdt =

3

2
aτT

Since the time T interval is divided into length τ time segments, let N be the number of such

segments (so T = Nτ); therefore, over the entire time T interval, the error in displacement is

no more than 32aNτ
2.

Since the given trajectory we are tracking is a trajectory constructed as in lemma 4.3, the

velocity does not change for the last (1 − c)T time in the time T interval (the approximating
velocity as constructed above stays constant in this last time also), this last time can be used

to correct the error in position with no net change to the velocity. To show how this is done

more explicitly, a few preliminary lemmas are needed.

The next lemma is a purely combinatorial fact, but needs to be established to see how much

error can be corrected in the adjustment interval.

Lemma 4.4 If M is an even integer ≥ 2, we define the sets

SM = {(a1, a2, ..., aM)|ak ∈ {−1, 0, 1} for 1 ≤ k ≤M, and
M∑
k=1

ak = 0}

15

TM = {
M∑
k=1

kak|(a1, a2, ..., aM) ∈ SM}.

Then the set TM is simply {−
(
M
2

)2
,−
(
M
2

)2
+ 1, ...,−1, 0, 1, ...,

(
M
2

)2 − 1,(M2
)2}.

Proof: The proof is by induction. For the base case, we will enumerate S2 and T2. It should be

obvious that S2 = {(1,−1), (0, 0), (−1, 1)}, and from this it is easy to construct T2 = {−1, 0, 1}.
This agrees with the lemma, and the base case has been proved.

For the induction, assume that the lemma holds forM−2, and we will prove that this implies
that the lemma is true forM . We will construct a set S′M = {(a1, a2, ..., aM)|(a1, aM) ∈ S2, and
(a2, a3, ..., aM−1) ∈ SM−2} and a set T ′M = {

M∑
k=1

kak|(a1, a2, ..., aM) ∈ S′M}. Clearly, S′M ⊆ SM
and T ′M ⊆ TM .
We make the following observation: for all (a1, a2, ..., aM) ∈ S′M ,

M∑
k=1

kak = a1 +MaM +
M−1∑
k=2

kak = a1 +MaM +
M−2∑
k=1

(k + 1)ak+1

= a1 +MaM +
M−2∑
k=1

kak+1 +
M−2∑
k=1

ak+1

Since (a2, a3, ..., aM−1) ∈ SM−2, we know that
M−2∑
k=1

ak+1 = 0. Furthermore, since the image of

M−2∑
k=1

kak+1 over S
′
M is TM−2 (by the induction hypothesis), we can use the definition of T ′M and

this observation to see that

T ′M = {M − 1 + e|e ∈ TM−2}
⋃{e|e ∈ TM−2}⋃{1−M + e|e ∈ TM−2}

It is easy to see that if M − 1+min{TM−2} ≤ max{TM−2}+1, then {n|n ∈ T ′M and n ≥ 0} =
{0, 1, ...,M−1+max{TM−2}}. Using the inductive hypothesis for min{TM−2} and max{TM−2},
we see that this is indeed true for all M ≥ 2. A similar argument holds for the negative half of
T ′M . Noticing that

M − 1 + max{TM−2} =M − 1 +
(
M − 2
2

)2
=M − 1 +

(
M

2

)2
−M + 1 =

(
M

2

)2
,

we see that T ′M = {−
(
M
2

)2
,−
(
M
2

)2
+ 1, ...,−1, 0, 1, ...,

(
M
2

)2 − 1,(M2
)2} ⊆ TM .

16

To see that the inclusion also goes the other way, observe that the maximum value of

TM occurs when a1 = a2 = · · · = aM/2 = −1 and aM/2+1 = aM/2+2 = · · · = aM = 1, so
max{TM} =

(
M
2

)2
. Similarly, it can be shown that min{TM} = −

(
M
2

)2
. The proof of the

lemma is now complete. 2

This lemma easily applies to give a result about the adjustment interval.

Lemma 4.5 Let M be a positive multiple of 2d (d a positive integer), and let e be any d-

dimensional vector with ‖e‖ ≤
(
M
2d

)2
. Define the set

A = {(a1, a2, ..., ad)|ai ∈ {−1, 0, 1} for some 1 ≤ i ≤ d, and aj = 0 for all j 6= i},

so ‖a‖ = 1 or ‖a‖ = 0 for all a ∈ A. Then there exists a sequence v1,v2, ...,vM where each
vi ∈ A such that

M∑
k=1

vk = 0 and
M∑
k=1

kvk =m, where ‖e−m‖ ≤
√
d
2 .

Proof: Let e = (e1, e2, ..., ed) and define

A1 = {(a1, a2, ..., ad)|a1 ∈ {−1, 0, 1}, and ai = 0 for all 2 ≤ i ≤ d},

and

S1 = {(v1,v2, ...,vM/d)|vi ∈ A1 for i = 1, 2, ...,
M

d
and

M/d∑
k=1

vk = 0}.

For any real number r with |r| ≤
(
M
2d

)2
, we can pick an integer m1 such that |r − m1| ≤ 1

2

and −
(
M
2d

)2 ≤ m1 ≤ (M2d
)2
. By lemma 4.4, there exists a sequence (v1,v2, ...,vM/d) ∈ S1 such

that

M/d∑
k=0

kvk = (m1, 0, ..., 0) — there are d− 1 zeros following m1.

Since |ei| ≤
(
M
2d

)2
for i = 1, 2, ..., d, this error correction can be repeated for each dimen-

sion, so there exists a sequence of M vectors v1,v2, ...,vM from A such that
M∑
k=1

vk = 0 and

M∑
k=1

kvk = (m1,m2, ...,md) =m, where |mi − ei| ≤ 1
2 for i = 1, 2, ..., d. Therefore,

‖m− e‖ ≤
√
(m1 − e1)2 + (m2 − e2)2 + · · ·+ (md − ed)2 ≤

√
d

(
1

2

)2
≤
√
d

2
.

2

17

We use a sequence of choice vectors constructed as in lemma 4.5 to correct the position

during the adjustment interval. As in corollary 3.1 we use aτ as one “unit length”, and set

M = (1− c)N . From lemma 4.3 and lemma 4.5 it can be seen that making adjustments during
the adjustment interval as in lemma 4.5 keeps the final velocity the same, and the first two

terms of equation (2) remain the same, but the last term can be adjusted by ±
(
(1−c)N
2d

)2
aτ2.

Thus as long as this possible adjustment is greater than the possible error, we can adjust the

final position to within
√
d
2 aτ

2 of the exact trajectory, while the final velocity is within aτ of

the exact trajectory.1 This is summed up in the following theorem.

Theorem 4.1 If we set N =
⌈
6d2

(1−c)2
⌉
(where c is from lemma 4.3) and τ = T

N , then given any

time T trajectory Γe that meets acceleration bound
a

(1+ε)2 , there is a trajectory Γa that uses only

the velocity choice vectors (meeting acceleration bound a) with

‖pe(T)− pa(T)‖ ≤
√
d

2
aτ2

‖ṗe(T)− ṗa(T)‖ ≤ aτ

Furthermore, we then have N = O(d2
(
1
ε

)2
).

Proof: By lemma 4.3, we can construct a trajectory Γs with the same endpoints as Γe, takes

time T , meets acceleration bound a
1+ε , and has constant velocity on the interval [cT, T]. As was

remarked following the proof of lemma 4.3, trajectory Γs can be tracked on our grid (producing

a grid trajectory Γt) such that the grid trajectory also takes time T , meets acceleration bound

a, and has constant velocity on [cT, T]. Furthermore, it was shown that the error of this

approximation can be bounded as

‖pe(T)− pt(T)‖ ≤ 3
2
Naτ2.

‖ṗe(T)− ṗt(T)‖ ≤ aτ

The interval [cT, T] is used to remove the error from the position (with no net change in

velocity) — the relationship between lemma 4.5 and the displacement of a grid trajectory is

1We have implicitly assumed that positive and negative unit length choice vectors for each coordinate axis
exist in our set of choice vectors. This assumption is not too great, as adding these vectors only increases the
size of our set of choice vectors by 2d. Furthermore, these vectors obviously exist on our superimposed square
grid.

18

obvious from equation (2). By lemma 4.5, the error of at most 32Naτ
2 can be reduced to

√
d
2 aτ

2

in (1 − c)N steps as long as this error is less than the possible adjustment:
[
(1−c)N
2d

]2
aτ2. In

other words, the error bounds in the theorem are met if

3

2
N ≤

[
(1− c)N
2d

]2
.

This condition is met for all N ≥ 6d2

(1−c)2 , so in particular is met for N =
⌈
6d2

(1−c)2
⌉
, and the error

bounds have been proved.

Due to the odd form of c, the asymptotic growth of N is not clear. Consider 1
1−c ; by

definition this is simply (for ε ≤ 1)
1

1− c =
2(1 + ε)

3 + 2ε−√9 + 8ε ≤
4

3 + 2ε−√9 + 8ε .

The growth rate (as 1ε →∞) can be compared with that of 1ε by taking the limit of the ratio

lim
1
ε
→∞

1
3+2ε−√9+8ε

1
ε

= lim
ε→0

ε

3 + 2ε−√9 + 8ε .

The numerator and denominator of this limit both go to 0, so using L’Hôpital’s rule, the limit

is equal to

lim
ε→0

1

2− 4(9 + 8ε)−1/2 =
1

2− 43
=
3

2
.

In other words, 1
1−c = Θ(

1
ε). It follows that

N =

⌈
6d2

(1− c)2
⌉
= O(d2

(
1

ε

)2
).

2

Now we turn attention to tracking within a certain tolerance. By tracking within tolerance

(ηx, ηv), we mean that given an exact trajectory Γe and an approximating trajectory Γa, at all

times t, both of the following inequalities hold.

‖pe(t)− pa(t)‖ ≤ ηx (5)

‖ṗe(t)− ṗa(t)‖ ≤ ηv (6)

The way we satisfy this is to divide the entire trajectory into a number of intervals, each

of which meet the endpoint conditions of theorem 4.1. By making the length of such intervals

sufficiently small, we can insure that equations (5) and (6) are satisfied.

19

For any two time T trajectories Γe and Γa satisfying the endpoint constraints of theorem 4.1,

it is easy to see that the approximating velocity can never be farther than aT +aτ = aτ(N+1)

from the exact velocity; therefore, to satisfy condition (6) we only need to insure that aτ(N +

1) ≤ ηv, or τ ≤ ηv
a(N+1) .

Guaranteeing that the position tolerance is obtained is also easy. An easy proof using

lemma 4.1 shows that at all times the position can never be farther off than (N(N+2)+
√
d)aτ2

2 , so

to satisfy condition (5) we need to insure that τ2 ≤ 2ηx
a(N(N+2)+

√
d)
. Both tolerance conditions

can be satisfied if

τ ≤ min
(√

2ηx

a(N(N + 2) +
√
d)
,

ηv
a(N + 1)

)
. (7)

Using the bound for N and noting that we want to control the growth of 1τ , it is interesting

to note that the above formula guarantees that we can track within tolerance (ηx, ηv) with

1
τ = O(

ad2

ε2
max(

√
1
ηx
, 1ηv)) (in other words, polynomial in a,

1
ε , d,

1
ηx
, and 1

ηv
).

The above discussion can be summed up in the following tracking theorem.

Theorem 4.2 Given any time T trajectory Γe from (pe(0),0) to (pe(T),0) that meets accel-

eration bound a, there exists a time (1 + ε)T trajectory Γa on a grid constructed as described in

corollary 3.1 that also meets acceleration bound a and satisfies

‖pe(t)− pa((1 + ε)t)‖ ≤ ηx

‖ṗe(t)− ṗa((1 + ε)t)‖ ≤ ηv,

for any given tolerance (ηx, ηv). Furthermore, the time spacing τ of the grid can be made to meet

1

τ
= O

(
ad2

(
1

ε

)2
max

(√
1

ηx
,
1

ηv

))
.

Proof: Consider the trajectory Γe slowed down as by lemma 4.2. This new trajectory

joins the same endpoints, takes time (1 + ε)T , and meets acceleration bound a
(1+ε)2 . From the

given ε and the number of dimensions d, we can calculate N as in theorem 4.1 and τ as in

equation (7). Now consider the time required by the slowed down trajectory to be divided into

segments, each of the form [iNτ, (i+1)Nτ]. Each segment meets all of the requirements to be

tracked as described in the text preceding this theorem, so the result is exactly as stated in the

theorem. 2

20

5 Tracking with Obstacles

As stated in the introduction, we are actually interested in finding paths that avoid a given set

of obstacles. The concepts of “safe” and “also-safe” trajectories reflect the real-world physical

property that robots cannot navigate accurately at high speeds; the terms were introduced in

section 1, and are restated here in a more formal setting.

Definition 5.1 Let δ(c1, c0) : R → R be an affine function that maps real numbers to real
numbers by δ(c1, c0)(x) = c1x+ c0 (it will map velocity magnitudes to distance magnitudes); when

there is no ambiguity about the values of c1 and c0 or the particular values are unimportant, this

function is written as simply δ. A trajectory Γr is considered δ(c1, c0)-safe (or just safe) if at all

times t during the trajectory, the norm of the distance vector to any object is at least δ(‖ṗr(t)‖).
An approximating trajectory Γq (approximating with accuracy ε) is called “also-safe” if at all times

t during the trajectory, the norm of the distance vector to any object is at least (1− ε)δ(‖ṗq(t)‖).

The notion of safe and also-safe trajectories comes from [1], and a more general version of

the following theorem can be found in their paper (as lemma 3.3). Note that in the following

proof, the only property of the norm that we use is the triangle inequality, so the theorem is

true for all norms, not just the L2 norm.

Theorem 5.1 Let δ(c1, c0) be a safety function as described in definition 5.1. A trajectory Γa

(found as described in theorem 4.2) that tracks a safe exact trajectory Γe with tolerances

ηx = ηv =
εc0

(1− ε)c1 + 1
will be also-safe.

Proof: For any time t, we define the “safe ball” about Γe to be the set of points within

distance δ(ṗe(t)) of the point pe(t). Similarly, the “also-safe ball” about Γa at time (1 + ε)t

is the set of points within distance (1 − ε)δ(ṗa((1 + ε)t)) of the point pa((1 + ε)t). It is only
necessary to show that the also-safe ball around Γa lies entirely within the safe ball about Γe

at all times. After showing this, it is clear that the also-safe ball around Γa is free of obstacles

(since the safe ball around Γe is free of obstacles); in other words, Γa is also-safe.

21

To show that the also-safe ball for Γa lies within the safe ball for Γe, consider any point

q in the also-safe ball about pa((1 + ε)t) — we wish to prove that q lies within the safe ball

about pe(t), which is true if and only if ‖q− pe(t)‖ ≤ δ(‖ṗe(t)‖). Of course,

‖q− pe(t)‖ ≤ ‖q− pa((1 + ε)t)‖+ ‖pa((1 + ε)t)− pe(t)‖. (8)

We can bound the first term on the right hand side by using the fact that q is within the

also-safe ball of pa((1 + ε)t) (so ‖q− pa((1 + ε)t)‖ ≤ (1− ε)δ(‖ṗa((1 + ε)t)‖)), and then write
this in terms of ṗe(t) and ηv. The final result is that

‖q− pa((1 + ε)t)‖ ≤ (1− ε)δ(‖ṗe(t)‖ + ηv).

The second term on the right hand side of equation (8) is easily upper bounded by ηx (by the

very definition of ηx), so

‖q− pe(t)‖ ≤ (1− ε)δ(‖ṗe(t)‖+ ηv) + ηx

Substituting the values of ηx and ηv found in the statement of the theorem, it is easily

shown that

(1− ε)δ(‖ṗe(t)‖+ ηv) + ηx ≤ δ(‖ṗe(t)‖),

so q must lie in the safe ball around pe(t). Since this is true for all points q in the also-safe

ball of Γa, the also-safe ball of Γa must lie entirely within the safe ball of Γe. 2

Combining this with the other results gives the following corollary (our main result).

Corollary 5.1 Given acceleration bounds a, obstacles E , and positive reals ε ≤ 1, c0, and c1, for
any δ(c1, c0)-safe trajectory taking time T , there exists a time spacing τ with

1

τ
= O

(
c1
c0
ad2

(
1

ε

)3)
,

a grid constructed from choice vectors (as described in section 3), and a (1−ε)δ-safe approximating
trajectory Γa between grid-points that takes time at most (1+ ε)T . Furthermore, this results in an

approximation algorithm that is fully polynomial in the combinatorial and algebraic complexity of

the environment, and pseudopolynomial in the kinodynamic bounds.

22

Proof: The existence proof of the (1 − ε)δ-safe approximating trajectory follows from the
results and discussion above. From the derivation of the bound on τ , it follows that a rational

grid size can be chosen where the grid length can be represented with a number of bits that is

polynomial in the lengths of the input parameters. It follows that the results of the other simple

intermediate calculations will also have polynomially many bits. As the grid is searched, it is

reasonably simple to check if the current state (a point on the grid) violates safety margins with

the obstacles — simply find the closest obstacle boundary point to the point being tested, then

check to see if that distance violates the safety function at the current velocity (the state gives

the velocity at the point). Verifying that safety constraints are not violated between grid-points

is a simple extension [1]. This operation is fully polynomial in the geometric complexity of the

obstacles E .
The size of the search space is exactly the number of possible states. Considering how fast

the grid of section 3 grows, it is clear that the number of possible velocity vectors in the search

space is bounded by
(
4vmax
εamaxτ

)d
. From the diameter D of the space and equation (2), it should

be clear that the number of possible positions is bounded by
(

4D
εamaxτ2

)d
. Combining these

quantities, the number of states is O

([
vmaxD
ε2a2maxτ

3

]d)
; in other words, since 1τ is polynomial in

the dynamics bounds, the total number of grid-points is polynomial in the dynamics bounds

(but not in their lengths — hence the search algorithm is only pseudopolynomial).

Since the grid size is polynomial in the kinodynamic bounds, and the complexity of checking

the validity of each grid-point is polynomial in the geometric complexity, the complexity results

claimed in the theorem are verified. 2

6 Conclusion

We have shown that while the (exact) optimal kinodynamic planning problem may be compu-

tationally difficult, it is possible to approximate the optimal path with our simple algorithm

— simply construct a grid as explained in section 3 and perform a search on this grid to find a

path from the start state to the goal state. The main result of this paper is that if the grid is

constructed within certain parameters (see corollary 5.1, equation (7), etc.), then for any safe

optimal path there exists an also-safe grid path that is within a (1 + ε) factor of optimal. The

23

size of the grid is polynomial in the input size, in 1ε , and in the dynamics bounds, so the result

is a polynomial approximation algorithm for kinodynamic planning (where dynamics bounds

are expressed in terms of maximum 2-norm for acceleration).

References

[1] J. Canny, B. Donald, J. Reif, and P. Xavier. “On The Complexity of Kinodynamic Plan-

ning,” 29th FOCS, 1988, pp. 306-316.

[2] J. Canny, A. Rege, and J. Reif. “An Exact Algorithm for Kinodynamic Planning in the

Plane,” Tech. Report.

[3] J. Canny, and J. Reif. “New Lower Bound Techniques for Robot Motion Planning,” 28th

FOCS, 1987, pp. 49-60.

[4] B. Donald and P. Xavier. “A Provably Good Approximation Algorithm for Optimal-Time

Trajectory Planning,” IEEE Int. Conf. on Robotics and Automation, 1989, pp. 958-963.

[5] B. Donald and P. Xavier. “Near-Optimal Kinodynamic Planning for Robots With Coupled

Dynamics Bounds,” IEEE Int. Symp. on Intelligent Controls, 1989.

[6] S. Fortune and G. Wilfong. “Planning Constrained Motion,” 20th STOC, 1988, pp. 445-

457.

[7] P. Jacobs and J. Canny. “Planning Smooth Paths for Mobile Robots,” IEEE Int. Conf.

on Robotics and Automation, 1989.

[8] C. Ó’Dúnlaing, “Motion Planning with Inertial Constraints,” Algorithmica, Vol. 2(4),

1987, pp. 431-475.

[9] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complex-

ity, Prentice Hall, Englewood Cliffs, NY, 1982.

[10] C. Papadimitriou. “An Algorithm for Shortest Path Motion in Three Dimensions,” Info.

Proc. Letters, Vol. 20, 1985, pp. 259-263.

24

[11] G. Sahar and J. Hollerbach. “Planning of Minimum-Time Trajectories for Robot Arms,”

IEEE Int. Conf. on Robotics and Automation, 1985.

[12] J. T. Schwartz and M. Sharir. “On the Piano Movers’ Problem: I. The Case of a Rigid

Polygonal Body Moving Amidst Polygonal Barriers,” Comm. Pure and Appl. Math., Vol.

36, 1983, pp. 345-398.

[13] Z. Shiller and S. Dubowsky. “Global Time-Optimal Motions of Robotic Manipulators in

the Presence of Obstacles,” IEEE Int. Conf. on Robotics and Automation, 1988.

25

