
The Risk Profile Problem for Stock Portfolio Optimization

Ming-Yang Kao∗ Andreas Nolte† Stephen R. Tate‡

October 12, 1999

Abstract

In this paper we study the problem of determining an optimal investment strategy for in-
vestors with different attitudes towards the trade-offs of risk and profit. The probability dis-
tribution of the return values of the stocks that are considered by the investor are assumed to
be known, while the joint distribution is unknown. The problem is to find the best investment
strategy in order to minimize the probability of losing a certain percentage of the invested capital
based on different attitudes of the investors towards future outcomes of the stock market.

We show that for portfolios made up of two stocks, we can exactly and quickly solve the
problem of finding an optimal portfolio for aggressive or risk-averse investors, using an algorithm
based on a fast greedy solution to a maximum flow problem. However, an investor looking for
an average-case guarantee (so is neither aggressive or risk-averse) must deal with a more difficult
problem. In particular, we show that computing the distribution function associated with the
average-case bound is]P -complete. On the positive side, we show how to use random sampling
techniques similar to those for high-dimensional volume estimation to provide approximate
answers. When k > 2 stocks are considered, we show that a simple solution based on the same
flow concepts as our 2-stock algorithm would imply that P = NP , so is highly unlikely. We give
approximation algorithms for this case as well as exact algorithms for some important special
cases.

∗Department of Computer Science, Yale University, New Haven, CT 06520; kao-ming-yang@cs.yale.edu. Research
supported in part by NSF CCR-Grant 9531028.

†Department of Computer Science, Yale University, New Haven, CT 06520; nolte@cs.yale.edu
‡Department of Computer Science, University of North Texas, Denton, TX 76203; srt@cs.unt.edu. Supported in

part by Texas Advanced Research Program Grant 1997-003594-019.

1 Introduction

This paper initiates the study of the risk profile problem for stock portfolio optimization. The
problem has several variants depending on a given investor’s preference toward the trade-off between
risk and return [8].

In the problem, the investor has a capital, which is normalized to one dollar. She considers k
different stocks S1, . . . , Sk and wishes to invest some xi dollars in each stock Si for a certain period
of time, where

∑k
i=1 xi = 1 and xi ≥ 0 for all i. The vector ~x = 〈xi〉

k
i=1 = 〈x1, x2, . . . , xk〉 is called

a portfolio. Let Pk be the set of all portfolios for k stocks. The return of ~x is the ratio, expressed
as a percentage, of the worth of this portfolio at the end of the investment period to the initial
investment of one dollar. The return of stock Sj is the ratio of its price at the end of the investment
period to its initial price, which is the same as the return of the portfolio 〈xi〉

k
i=1 with xj = 1 and

all the other xi = 0.
Let µ be a positive real number. Let m1 and m2 be integers with m1 < m2, and let m =

m2 − m1 + 1. Let ∆ = {`µ | ` = m1, . . . ,m2}. Each stock Si is associated with a discrete
probability distribution Si over ∆, where Si(β) is the probability that the stock’s return is β%. For
the sake of technical convenience, we allow m1 and m2 to be negative. The probability distributions
S1, . . . ,Sk are part of the input in our problem and are obtainable, e.g., by observing historical
market data. We assume that non-zero values satisfy S1(β) ≥ 1/nc for some constant c, and
when representation is important we assume that these values can be represented as fixed-point
numbers with O(log n) bits. The parameters µ, m1, and m2 control the precision and range of
such observations. For instance, for µ = 1, m1 = 0, and m2 = 200, the set of possible returns are
0%, 1%, . . . , 200%. The joint distribution of the k probability distributions Si is usually unavailable
for a variety of practical reasons. In particular, a joint distribution consists of nk entries and thus
would require observing an exponential number of data points in k.

The investor’s goal is to find a portfolio ~x, which is optimal according to her risk preference
in six basic cases as follows. For a risk-averse investor, minimizing loss is more important than
maximizing win, while an aggressive investor has the opposite priority. Each of these two investor
types can be further classified into three subtypes, namely, best-case, worst-case, and average-case,
referring to whether the probability of loss or win is estimated in the best, worst, or average case
over the feasible joint distributions. More precisely, for each of these six types, the investor first
chooses a target return α and then looks for such a portfolio ~x that optimizes one of the following
six probabilities:

• RAb(α, ~x) (respectively, RAw(α, ~x) or RAa(α, ~x)) denotes the smallest (respectively, largest
or average) probability that the return of ~x is at most α% over all joint distributions for
S1, . . . ,Sk.

• AGb(α, ~x) (respectively, AGw(α, ~x) or AGa(α, ~x)) denotes the largest (respectively, smallest
or average) probability that the return of ~x is at least α% over all joint distributions for
S1, . . . ,Sk.

If the investor is best-case (respectively, worst-case or average-case) risk-averse, she would choose
~x to minimize RAb(α, ~x) (respectively, RAw(α, ~x) or RAa(α, ~x)). In contrast, if the investor is
best-case (respectively, worst-case or average-case) aggressive, she would choose ~x to maximize
AGb(α, ~x) (respectively, AGw(α, ~x) or AGa(α, ~x)).

While the risk profile problem originates from a very applied field, the corresponding mathe-
matical model has a substantial combinatorial structure. In the cases where the investor is highly

1

risk-averse or highly aggressive, we can model the problem as a network flow problem. Quite sur-
prisingly, in the two-stock case, this flow problem is solvable by a simple greedy algorithm in O(m)
time. In contrast, for the three-stock case, the applicability of a greedy flow-based algorithm would
imply P = NP . If the number k of stocks is part of the input, we give an exact algorithm based
on linear programming which takes time polynomial in the number of entries of a corresponding
contingency table but exponential in the input size. To supplement this algorithm, we also give
a polynomial-time approximation algorithm based on linear programming. We further present an
exact polynomial-time algorithm in the practical case where the capital can only be broken up into
a fixed number of units (e.g., cents).

It remains open whether this problem is NP -complete if the number of stocks is part of the
input. We strongly suspect that this is indeed the case.

In the case of an average-case investor we show]P -hardness of the problem of computing the
distribution function over various probability bounds, a natural first-step in solving the average-
case investor problem. This hardness result holds even in two dimensions, and we describe an
approximation algorithm for this case. This algorithm uses a random walk approach to sample
from the feasible joint distributions, and is closely related to volume computation and sampling
from log-concave distributions.

Section 2 defines some notation. Section 3 discusses the case where there are only two stocks
under consideration. Section 4 discusses the case of general k. Due to page limitations, all figures
are placed in the appendix (these figures are helpful in understanding the material, but are not
strictly necessary).

2 Notation

Let ~δ ∈ ∆k denote a vector 〈δ1, . . . , δk〉, where δi ∈ ∆. Let

M = [M~δ
]~δ∈∆k

denote a k-dimensional matrix indexed by ∆k. Let Mk denote the set of k-dimensional matrices
for all possible joint distributions of S1, . . . ,Sk; i.e., Mk consists of all matrices

M = [M~δ
]~δ∈∆k ,

where (1) M~δ
is the probability that the return of stock Si is δi% for i = 1, . . . , k, and (2) thus for

all ~δ ∈ ∆k,M~δ
≥ 0 and for all β ∈ ∆ and j = 1, . . . , k,

Sj(β) =
∑

~δ∈∆k;δj=β

M~δ
.

For instance, Mk contains the matrix M defined by

M~δ
=

k
∏

i=1

Si(δi).

Also, in the two-stock case, each M ∈ M2 is just a two-dimensional m ×m matrix, where for all
δ1, δ2 ∈ ∆, the entries of M in column δ1 sum up to S1(δ1) and those in row δ2 sum up to S2(δ2).

2

Given a portfolio ~x ∈ Pk and a target return α, let

L(α, ~x) =

{

~δ ∈ ∆k|
k

∑

i=1

xiδi ≤ α

}

,

L∗∗(α, ~x) =

{

~δ ∈ ∆k|
k

∑

i=1

xiδi < α

}

,

U(α, ~x) =

{

~δ ∈ ∆k|
k

∑

i=1

xiδi ≥ α

}

,

U∗∗(α, ~x) =

{

~δ ∈ ∆k|
k

∑

i=1

xiδi > α

}

,

which are the sets of the indices of all entries in the matrices inMk such that the return of ~x is at
most, less than, at least, and more than α%, respectively. We further define the following functions
on M ∈Mk:

Lα,~x(M) =
∑

~δ∈L(α,~x)

M~δ
,

L
∗∗
α,~x(M) =

∑

~δ∈L∗∗(α,~x)

M~δ
,

Uα,~x(M) =
∑

~δ∈U(α,~x)

M~δ
,

U
∗∗
α,~x(M) =

∑

~δ∈U∗∗(α,~x)

M~δ
,

which are the probabilities in the joint distribution M that the return of ~x is at most, less than, at
least, and more than α%, respectively. Formally, if uMk

(M) is a uniform density over Mk,

RAb(α, ~x) = min
M∈Mk

Lα,~x(M); (1)

RAw(α, ~x) = max
M∈Mk

Lα,~x(M); (2)

RAa(α, ~x) =

∫

Mk

Lα,~x(M)uMk
(M)dM ; (3)

AGb(α, ~x) = max
M∈Mk

Uα,~x(M); (4)

AGw(α, ~x) = min
M∈Mk

Uα,~x(M); (5)

AGa(α, ~x) =

∫

Mk

Uα,~x(M)uMk
(M)dM. (6)

For example, in the two-stock case, L(α, 〈x1, x2〉) is the set of all indices in a two-dimensional
table M in M2 on or below the line x1δ1 + x2δ2 = α, and RAw(α, 〈x1, x2〉) maximizes the sum
of the entries in this region under the condition that M has the given column and row sums of
S1(m1), . . . ,S1(m2),S2(m1), . . . ,S2(m2).

For technical convenience, we also define the following terms:

RA∗∗
b (α, ~x) = min

M∈Mk

L
∗∗
α,~x(M); (7)

3

RA∗∗
w (α, ~x) = max

M∈Mk

L
∗∗
α,~x(M); (8)

RA∗∗
a (α, ~x) =

∫

Mk

L
∗∗
α,~x(M)dM ; (9)

AG∗∗b (α, ~x) = max
M∈Mk

U
∗∗
α,~x(M); (10)

AG∗∗w (α, ~x) = min
M∈Mk

U
∗∗
α,~x(M); (11)

AG∗∗a (α, ~x) =

∫

Mk

U
∗∗
α,~x(M)dM. (12)

Lemma 2.1 The following statements hold.

min
~x∈Pk

RAb(α, ~x) = 1− max
~x∈Pk

AG∗∗b (α, ~x) (13)

min
~x∈Pk

RAw(α, ~x) = 1− max
~x∈Pk

AG∗∗w (α, ~x) (14)

min
~x∈Pk

RAa(α, ~x) = 1− max
~x∈Pk

AG∗∗a (α, ~x) (15)

max
~x∈Pk

AGb(α, ~x) = 1− min
~x∈Pk

RA∗∗
b (α, ~x) (16)

max
~x∈Pk

AGw(α, ~x) = 1− min
~x∈Pk

RA∗∗
w (α, ~x) (17)

max
~x∈Pk

AGa(α, ~x) = 1− min
~x∈Pk

RA∗∗
a (α, ~x) (18)

Proof. Straightforward.
In light of Lemma 2.1, to solve the risk profile problem, it suffices to show how to compute

min~x∈Pk
RAb(α, ~x), min~x∈Pk

RAw(α, ~x), min~x∈Pk
RAa(α, ~x),

min~x∈Pk
RA∗∗

b (α, ~x), min~x∈Pk
RA∗∗

w (α, ~x), min~x∈Pk
RA∗∗

a (α, ~x).

The techniques for computing the latter three expressions are essentially the same as those for
computing the former three. Furthermore, the techniques for computing the first expression are
almost identical to those for computing the second. For these reasons, the remainder of this paper
focuses on how to compute min~x∈Pk

RAw(α, ~x) and min~x∈Pk
RAa(α, ~x).

3 The Two-Stock Case

This section assumes that k = 2, i.e., there are only two stocks under consideration. In the case
of two stocks, we can visualize the problems under consideration as in Figure 1. The discrete and
finite set of possible return pairs for the two stocks in the portfolio are shown as the dots in this
picture – each pair has a probability (from the joint distribution) associated with it, with the given
restrictions on column and row sums. A given portfolio and target return α defines a half-space on
the set of return pairs, with the shaded area in Figure 1 giving the area in which the total return
is ≤ α. The problem of computing RAw(α, ~x) then is the problem of determining which feasible
assignment of joint probabilities places the highest total probability in the shaded region.

3.1 A Worst-Case or Best-Case Investor

Given a target return α, this section focuses on how to compute an optimal portfolio for a worst-case
risk-averse investor. The cases of a best-case risk-averse investor, a worst-case aggressive investor,
and a best-case aggressive investor can be solved similarly.

4

We first present a basic algorithm to compute RAw(α, ~x) by computing a worst-case joint
distribution matrix M for S1 and S2. For convenience, we index the entries of M with {(i, j) |
i, j = m1, . . . ,m2}, where row i (respectively, column i) corresponds to return iµ of S1 (respectively,
jµ of S2). We model the problem of computing M as a network flow problem on the graph G defined
below:

• G has 2(m + 1) vertices, namely, a source s, a sink t, and vm1
, . . . , vm2

, wm1
, . . . , wm2

, where
vi (respectively, wi) corresponds to return iµ of stock S1 (respectively, stock S2).

• For all i, j = m1, . . . ,m2, G has (1) edge (vi, wj), which has capacity c(vi, wj) = 1 if x1iµ +
x2jµ ≤ α or 0 otherwise; (2) the edge (s, vi) with capacity c(s, vi) = S1(iµ); and (3) the edge
(wj , t) with capacity c(wj , t) = S2(jµ).

Geometrically, we wish to push as much probability as possible into the region of M defined
by x1i + x2j ≤

α
µ . In other words, the value of a maximum s − t flow of G equals RAw(α, ~x).

Thus, it is tempting to use a maximum flow algorithm to solve this maximum flow problem. The
fastest known algorithm for this problem is due to Goldberg and Rao [5] and runs in O∗(m2 2

3)
time1 for our application (note that m in this bound is as defined in this paper, not as the number
of edges which is typical in general flow discussion). Instead of using this algorithm, we exploit
some structural properties of G to solve the flow problem using a simple greedy algorithm in O(m)
arithmetic operations. Note that since G may have Ω(m2) edges with positive capacity, we cannot
afford to construct the whole G explicitly. The idea of our O(m)-time algorithm can be described
as follows.

Starting with vm2
, we try to push a flow of c(s, vm2

) through G. Assume c(vm2
, wm1

) = 1
for simplicity. We consider the path formed by edges (s, vm2

), (vm2
, wm1

), (wm1
, t) first. We

can push flow min(c(s, vm2
), c(wm1

, t)) through this path, saturating either (s, vm2
) or (wm1

, t).
If we saturated (s, vm2

) then we next consider the path (s, vm2−1), (vm2−1, wm1
), (wm1

, t) for
pushing additional flow; however, if we had saturated (wm1

, t) we will next consider the path
(s, vm2

), (vm2
, wm1+1), (wm1+1, t). We continue in this fashion until we can push no more flow. The

only complication is that if at some point we are considering the path (s, vi), (vi, wj), (wj , t), and
c(vi, wj) = 0, then obviously we can’t saturate either (s, vi) or (vj , t), and we simply decrease i
to next consider the path (s, vi−1), (vi−1, wj), (wj , t). The details of this O(m) time algorithm are
given in Figure 2.

Theorem 3.1 Given S1,S2, a valid portfolio vector ~x, and α as input, Greedy-Flow computes the
value of a maximum flow of G in O(m) arithmetic operations.

Proof. As a first step we prove that the algorithm computes the maximal flow. Let ` be the
minimal index such that (w`, t) is not saturated after termination of the algorithm and k be the
minimal index such that c(vk, w`) = 0. We define a partition V1 ∪ V2 of the nodes by

V1 = {s, vk, . . . , vm2
, wm1

, . . . , w`−1}, V2 = V̄1.

It is trivial from the definition of j that the edges e = (wi, t), i = {m1, . . . , `− 1} are saturated.
Since x1, x2 ≥ 0, and k is the minimal value such that c(vk, w`) = 0, we have c(vi, w`) = 1

for i = m1, . . . , k − 1. Since (w`, t) is not saturated, all edges (s, vi), i ∈ {m1, . . . , k − 1} must be
saturated.

1We use O∗(f(n)) for the “soft-O” notation, which ignores polylogarithmic factors. In bounds for the approxima-
tion algorithms, this notation also ignores factors that depend only on the approximation bound ε.

5

From the definition of k and the non-negativity of the portfolio vector it is easy to see that
edges e = (vi, wj) for i ∈ {k, . . . ,m2}, j ∈ {`, . . . ,m2} and positive capacity cannot exist. Thus,
every edge e = (x, y) with x ∈ V1 and y ∈ V2 is saturated. The Max-Flow-Min-Cut Theorem then
implies that the algorithm indeed computes a maximal flow.

Observing the fact that in each loop iteration either index i is decremented or index j is
incremented, and that there are only m different values that either i or j can take on before the
algorithm terminates, there are at most 2m− 1 loop iterations, and the linear running time bound
follows.

To compute inf{RAw(α, ~x)|
∑

xi = 1} we have to compute RAw(α, ~x) for all possible portfolios
〈x1, x2〉. However, each feasible portfolio corresponds to a half-space (as in Figure 1) defined by
a line that goes through the point (α, α) (x1α + x2α = α, since x1 + x2 = 1), so we only need
to consider the O(m2) distinct subsets of return pairs that can be defined by a line going through
(α, α). We can identify each such portfolio with a different (non-positive) slope s1, . . . , sm2 , which
we assume to be sorted in descending order. By using a suitable data structure it is possible to
compute the best portfolio much faster than the obvious O(m3) algorithm that starts the greedy
algorithm for each slope.

Theorem 3.2 Given S1,S2, and α, we can compute in O(m2 log m) arithmetic operations a port-
folio 〈x1, x2〉 for a worst-case risk-averse investor which minimizes equation (2).

Proof. Starting with the first slope s1 we build up a binary tree. Each is labeled with a pair of two
real entries (e1, e2). The leaves of the tree correspond to the rows and the columns in the following
way.

Starting from column m2 we add leaves from left to right. We add leaves with labels (0,S2(m1µ)),
(0,S2((m1+1)µ)), . . ., (0,S2(jmµ)), until we reach a row index jm such that x1m2µ+x2(jm +1)µ >
α, i.e., this index is the last under the crucial line. To be precise we let jm = bα−x1m2µ

x2µ c;
note that it may be the case that jm < m1, so this sequence of leaves may be empty. Then
we add the leaf (−S1(m2µ), 0). Next, we consider column m2 − 1 and add leaves (0,S2((jm +
1)µ), . . . , (0,S2((jm−1)µ)), until we reach an index jm−1, such that x1(m2−1)µ+x2(jm−1+1)µ > α.
Then we add the leaf (−S1((m2 − 1)µ), 0) and proceed similarly with column m2 − 2. Note that
the order of adding leaves is crucial to this data structure and the correctness of the algorithm is
based on that. Starting from left to right we group the leaves in pairs of 2 and build a parent node
for each pair according to the following rule

parent[(e1, e2), (f1, f2)] = (e1 + min{e2 + f1, 0},max{e2 + f1, 0}+ f2).

We build O(log m) layers iteratively, until we reach a single root node (r1, r2). It is easy to see that
this tree based algorithm imitates the greedy algorithm described before and that 1 + r1 = 1− r2

is exactly the flow value. Building this tree structure takes constant time per tree node, and since
there are O(m) nodes we have a total time of O(m), which is no better than the time bound of the
greedy algorithm. The advantage is that we can dynamically update this data structure efficiently.

We will first sort all of the m2 possible return pairs by their slope with the point (α, α), so
that as the slope determined by our portfolio increases we can quickly (in constant time per pair)
determine which pairs are added and which are removed from our halfspace of interest. This
takes O(m2 log m) time. To update our data structure for each point insertion/removal, all that is
required is swapping the position of two neighboring leaves. With obvious techniques, the positions
of these two leaves can be found in O(1) time, and we can update the tree by looking at the path
from the two leaves to the root and update each node on that path. Each update step requires O(1)

6

operations and the length of the path is bounded by O(log m). Since there are at most m2 point
additions and removals, each taking O(log m) time, it takes at most O(m2 log m) time to consider
all possible portfolios.

3.2 The Average-Case Investor

For the average-case investor (RAa or AGa), we are not interested in the extremes of the joint distri-
butions, but rather the distribution of the feasible tables. In this section we consider Q = Lα,~x(M)
a random variable where M is drawn from a uniform distribution over the feasible tablesMk. The
definition of RAa(α, ~x), from (3), is then E[Q]. We will see that computing the distribution func-
tion of Q is a computationally difficult problem to solve exactly, but can be approximated within
a reasonable (polynomial) amount of time.

Theorem 3.3 Let γ ∈ [0, 1] be an n-bit rational. It is]P -hard to compute the fraction of feasible
tables M ∈M2 with

Lα,~x(M) =
∑

δ∈L(α,~x)

Mδ ≤ γ

(the integration of the corresponding indicator function, or the distribution function for Q).

Proof. Given positive integers a1, . . . , an, b, it is shown in [1] that computing the n-dimensional
volume of the polyhedron P

n
∑

j=1

ajyj ≤ b 0 ≤ yj ≤ 1 (j = 1, . . . , n)

is]P -hard. Let d =
∑n

j=1 aj and consider the polyhedron

n+1
∑

j=1

ajyj = d 0 ≤ yj ≤ 1 (j = 1, . . . , n + 1), (19)

where an+1 = d. Note that for any valid assignment of values to y1, y2, . . . , yn we have 0 ≤
∑n

j=1 ajyj ≤ d, so there is a yn+1 ∈ [0, 1] that will satisfy (19). Now let a′
i = ai/(2d) and define a

2× (n + 1) contingency table by t1j = a′jyj, t2j = a′j(1− yj), with row sums (1/2, 1/2) and column
sums (a′1, . . . , a

′
n+1).

To completely define our stock problem, we must also give values for µ, α, the portfolio ~x =
〈x1, x2〉, and the threshold γ, which we do as follows:

µ = 1, x1 =
1

n + 1
, x2 =

n

n + 1
, α =

2n

n + 1
, γ =

b

2d
.

It is straight-forward to verify from these values that the return pairs in the critical region (the
shaded region in Figure 1) are exactly the entries t1j for j = 1, . . . , n. Therefore, the tables that
satisfy our criteria, that Lα,~x(M) ≤ γ, are precisely those with

n
∑

j=1

t1j ≤ γ ⇐⇒
n

∑

j=1

a′jyj ≤ γ ⇐⇒
n

∑

j=1

ajyj ≤ γ · 2d = b.

Therefore the feasible tables that meet our criteria are exactly those that correspond to points in
polyhedron P , and so the fraction of tables that meet the criteria is exactly the volume of P .

7

Following the notation of Dyer, Kannan and Mount [3], who describe a sampling procedure for
contingency tables with integer entries and large row and column sums (≥ Ω(m3)), we define

V (r, c) =







x ∈ Rm×m|
∑

j

xij = ri for i = 1, . . . ,m and
∑

i

xij = cj for j = 1, . . . ,m







and
P (r, c) = V (r, c) ∩ {x|xij ≥ 0 for i = 1, . . . ,m, j = 1, . . . ,m}

as the contingency polytope. Thus, V (r, c) is the set of matrices with row and column sums
specified by r and c respectively. In our case ri = S1(iµ), ci = S2(iµ) and P (r, c) is the set of joint
distributionsMk.

Let U be the lattice

{x ∈ Zm×m|
∑

j

xij = 0 for i = 1, . . . ,m,
∑

i

xij = 0 for j = 1, . . . ,m}.

For 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ m − 1, let b(ij) be the vector in Rm×m given by b(ij)i,j =
1, b(ij)i+1,j = −1, b(ij)i,j+1 = −1, b(ij)i+1,j+1 = 1 and b(ij)k,` = 0 for all other indices k, `. Any
vector x in V (0, 0) can be expressed as linear combination of the b(ij)’s as follows

x =
m−1
∑

k=1

m−1
∑

`=1





k
∑

i=1

∑̀

j=1

xij



 b(k`).

It is easy to see that the b(ij) are all linearly independent and the the dimension of V (r, c) and
P (r, c) for positive row and column sum vectors r and c is (m−1)2 [3]. We will apply the sampling
algorithm pioneered by Dyer, Frieze and Kannan [2] and later refined in a sequence of papers (see
[6] for an overview) to sample uniformly at random in P (r, c).

We sample in the space V (r, c). As mentioned in the introduction, we know a starting point
z0 in P (r, c) (multiplication of rows and column sums). It is easy to see that a ball of radius b2

is inside P (r, c), if every component of r and c is at least b. Since in our case r and c sum up to
one, P (r, c) ⊂ B(0, 1). The following theorem is a corollary of the analysis of the fastest sampling
algorithm in convex bodies known so far by Kannan, Lovasz and Simonovits [7].

Theorem 3.4 We can generate a point in P (r, s), which is almost uniform in the sense that its
distribution is at most ε away from the uniform in total variation distance. The algorithm uses
O∗(m6

b4) membership queries of P (r, s) (each requires O(m2) arithmetic operations).

Theorem 3.5 Procedure Estimate (in Figure 3) computes a number S in O∗
(

m8

b4ε2δ

)

arithmetic

operations, which approximates RAa(α, ~x) (i.e., RAa(α, ~x)−ε ≤ S ≤ RAa(α, ~x)+ε) with probability
1− δ.

Proof. Let Sk = 1
k

∑k
i=1 Lα,~x(ζi). Thus, E(Sk) =

∫

Lα,~x(M)w(M)dM , where w is the density
produced by the random walk. Since 0 ≤ Lα,~x(M) ≤ 1 for all M ∈ M2, it is easy to see that
σ2(S1) ≤ 1 and so σ2(Sk) ≤

1
k . By Chebychev’s inequality,

P (|Sk −E(Sk)| ≥ ε/2) ≤
σ2(Sk)

(ε/2)2
≤

4

ε2k
.

Since the samples are not entirely uniform, we must consider the error introduced by the approxi-
mately uniform sampling distribution as well. Let uMk

(M) denote a uniform density over the set
Mk, and then approximating a uniform distribution within bound ε/4, Theorem 3.4 implies

8

|E(Sk)−RAa(α, ~x)|

=

∣

∣

∣

∣

∫

Lα,~x(M)w(M)dM −

∫

Lα,~x(M)uMk
(M)dM

∣

∣

∣

∣

≤

[

∫

w>uMk

(w(M)− uMk
(M)) dM +

∫

w≤uMk

(uMk
(M)− w(M)) dM

]

≤ ε/2.

Setting k = 4
ε2δ

the theorem follows.

4 The k-Stock Case

In this chapter we consider the general case of more than two stocks. Since the problem of estimating
the probability distribution for the average-case investor is already]-P complete in the two stock
case, we do not consider it any more and concentrate on a worst-case investor. We start with
a complexity result for three stocks, which implies that a greedy or flow based portfolio is quite
unlikely to exist.

Theorem 4.1 The existence of a greedy or flow based portfolio for the problem with 3 or more
stocks implies P = NP .

Proof. (Sketch) We prove this result by reduction from NUMERICAL-3-DIM-MATCHING.
Consider an instance of NUMERICAL-3-DIM-MATCHING, i.e., disjoint sets X1, X2, X3, each
containing m elements, a size s(a) ∈ Z+ for each element a ∈ X1 ∪X2 ∪X3 and bound B ∈ Z. We
would like to know if X1∪X2∪X3 can be partitioned into m disjoint sets such that each of these sets
contains exactly one element from each of X1, X2, and X3, and the sum of the elements is exactly
B (we can change this requirement to ≤ B without difficulty). This problem is NP-complete in the
strong sense, so we restrict the sizes to be bounded by a polynomial, s(a) ≤ nc for some constant
c.

We construct an instance of the problem of computing RAw(α, 〈1/3, 1/3, 1/3〉) by making a
contingency table in which Sk(i) = ck,i/m, where ck,i is the number of items in set Xk with value
i. The existence of a greedy or flow based algorithm implies the existence of a solution in which
all entries in the solution table are multiples of 1/m, and such a solution exists with Lα,~x(M) = 1
if and only if there is a valid partition of X1 ∪X2 ∪X3. If such a partition exists, we can find it
by simply taking all of the triples “selected” (with multiplicity determined by the integer multiple
of 1/m), and use elements from X1, X2, and X3 as determined by the three coordinates of each
selected point.

While this proof shows that it is unlikely that a fast and simple greedy or flow-based algorithm
exists, as it does for 2 stocks, we can indeed solve the problem for a fixed number of stocks in
polynomial time using a more time-consuming procedure based on linear programming. This is
stated in a general setting in the following theorem.

Theorem 4.2 If the number of stocks k is part of the input, the problem of determining the best
portfolio for a worst-case investor can be solved in time polynomial in the number of entries of the
contingency table (but exponential in k).

Proof. The problem can be modeled as linear program with a number of variables, that corresponds
to the number of entries of the contingency table, and km inequalities.

9

4.1 An Approximation Algorithm

In this section we describe an approximation algorithm, that solves the problem of determining
the worst case probability for a given portfolio within a given error ε ∈ R+ in polynomial time.
Additionally, we describe an important, non-trivial special case, where the problem can be solved
exactly in polynomial time.

Theorem 4.3 Suppose that a portfolio 〈xi〉
k
i=1 and a target return α are given. The worst-

case probability can be approximated (i.e., we compute a value W with RAw(α, ~x) − ε ≤ W ≤
RAw(α, ~x) + ε) in time polynomial in k and n. The number of steps is dominated by solving a
linear program in O(km2/ε2) variables and O(km/ε) constraints.

Proof. We consider the first pair of stocks S1 and S2 as in the two dimensional case and define a
new portfolio as x̃1 = x1

x1+x2
and x̃2 = x2

x1+x2
. We divide the two dimensional plane in ` = 1

εm log k
regions by ` parallel lines x̃1x + x̃2y = const of constant distance. Thus, we divide the entries of
the joint distribution matrix into ` different sets (see Figure 4).

Each entry in the matrix corresponds to a variable and the variables satisfy the row sum and
column sum condition of the joint distribution. Next, we sum up the entries in the ` different sets
and assign the sums to ` new variables. By combining these sum variables from two different pairs
of stocks, we get a new table with new row and column sum conditions, resulting again in ` new
sum variables.

Repeating combinations in this manner, we stop after log k iterations and the creation of
O(km2 log k/ε2) variables and O(km log k/ε) constraints, leaving just one table with 2 border
distributions (expressed as variables). Assuming, that the variables of the border distributions
correspond to the distribution of the stocks S1, . . . , Sk/2 and Sk/2+1, . . . , Sk, we do the following.

We define a portfolio x̃1 =
x1+···+xk/2

∑

xi
and x̃2 =

xk/2+1+···+xn
∑

xi
for our last table and consider the

line x̃1x + x̃2y = α, dividing our last table in two sets. The variables below that line are summed
up and we solve a linear program by maximizing this sum subject to the constraints created before.
Since we reduced the number of entries in each table from Ω(m2) to only `, that are considered in
the next table, we lost some precision during the combination. But, after the first pairing in the
lowest level of the binary tree, each sum variable represents a loss probability of the combination
of the two stocks within an error of ε

log k%. Furthermore, it is easy to see that during the repeated
combination of the stocks the error accumulates linearly in each iteration. Thus, the theorem
follows.

Theorem 4.4 Suppose that a portfolio 〈xi〉
k
i=1 and a target return probability p is given. Under

the assumption, that the dollar, that has to be invested, can only be broken into a fixed number c of
equal units (cents), the worst-case probability can be computed exactly in time polynomial in k and
m.

Proof. The proof is based on a similar construction as the approximation algorithm and is omitted
from this abstract.

10

References

[1] M. Dyer and A. Frieze. Computing the volume of convex bodies: a case where randomness
provably helps. In Probabilistic combinatorics and its applications, pages 123–169. American
Mathematical Society, Providence, RI, 1991.

[2] M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for approximating
the volume of convex bodies. Journal of the ACM, 38(1):1–17, 1991.

[3] M. Dyer, R. Kannan, and J. Mount. Sampling contingency tables. Random Structures Algo-
rithms, 10(4):487–506, 1997.

[4] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York, NY, 1979.

[5] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the ACM,
45(5):783–797, 1998.

[6] R. Kannan. Markov chains and polynomial time algorithms. In Proceedings of the 35th Annual
IEEE Symposium on the Foundations of Computer Science, pages 656–671, 1994.

[7] R. Kannan, L. Lovász, and M. Simonovits. Random walks and an O∗(n5) volume algorithm for
convex bodies. Random Structures Algorithms, 11(1):1–50, 1997.

[8] W. F. Sharpe, G. J. Alexander, and J. V. Bailey. Investments. Prentice-Hall, Upper Saddle
River, NJ, 5th edition, 1995.

Figure 1: Visualization of two stock case

F ← 0
i← m2

cv ← c(s, vi)
j ← m1

cw ← c(wj , t)
loop

if c(vi, wj) = 1 and cw ≤ cv then

F ← F + cw
cv ← cv − cw
j ← j + 1
if j > m2 then return F
cw ← c(wj , t)

else

if c(vi, wj) = 1 then

F ← F + cv
cw ← cw − cv

end if

i← i− 1
if i < m1 then return F
cv ← c(s, vi)

end if

end loop

Figure 2: The procedure Greedy-Flow

procedure Estimate(x)

S ← 0
N = 100

ε2δ
for ` = 1, . . . , N do

ζi ← result from sample procedure started at x
S ← S + Lα,~x(ζi)

end for

S ← S/N
return S

Figure 3: The approximation algorithm

Figure 4: Striping idea used in worst-case approximation construction

