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Abstract

This dissertation presents the results of my research in two areas: parallel algorithms/circuit
complexity, and algorithmic motion planning. The chapters on circuit complexity examine the
parallel complexity of several fundamental problems (such as integer division) in the model of
small depth circuits. In the later chapters on motion planning, we turn to the computationally
intensive problem of planning efficient trajectories for robots in both cooperative and non-
cooperative environments.
Specifically, we first examine the complexity of integer division with remainder under the

standard model of constant fanin boolean circuits. We restrict our attention to circuits which
are logspace uniform, and present a novel algorithm that has better asymptotic complexity
bounds than any previously known algorithm. In fact, it matches the best previously known
depth bound and the best previously known size bound simultaneously.
Next, we examine circuits where each gate has arbitrary fanin, and can compute the MA-

JORITY function. Interestingly, while it is impossible to compute integer division with constant
depth, unbounded fanin AND/OR circuits, we show that it is possible to compute it with only
O(n1+ε) gates (for any constant ε > 0) and constant depth when MAJORITY gates are allowed.
Unfortunately, to get a constant depth circuit, we allow the circuit to be only P-uniform (rather
than logspace uniform).
In the chapters on motion planning, we first give an approximation bound for optimal time

motion planning, where the robot is given bounds on the L2 norms of velocity and acceleration.
This (and concurrent, independent work by Donald and Xavier) was the first such approxima-
tion algorithm for robots with dynamics bounded in the L2 norm.
The second chapter on motion planning addresses the following problem: what if a sec-

ond, non-cooperating (or even adversarial) robot is added to the environment. This problem
is referred to as a pursuit game, and we must make a plan that avoids collisions with the
second robot. We present both an exponential time lower bound and several polynomial time
approximation algorithms for this problem. The lower bound is the first truly intractable lower
bound for a robotics problem with perfect information. Despite this lower bound, we present
a polynomial time algorithm that gives approximately optimal solutions to an important class
of pursuit games — namely, those where it is possible for our robot to keep a certain “safety
margin” between it and its adversary.



Contents

1 Introduction 1

1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Study of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Circuit Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Circuit Uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.3 Division with Bounded Fanin Boolean Circuits . . . . . . . . . . . . . . . 5

1.3.4 Threshold Circuit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Algorithmic Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Geometric Planning Problems . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Dynamics Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.3 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.4 Planning in a Cooperative Environment . . . . . . . . . . . . . . . . . . . 7

1.4.5 Planning in a Hostile Environment . . . . . . . . . . . . . . . . . . . . . . 8

2 Newton Iteration and Division 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Newton Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Integer Powering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Bit Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Power Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Putting the Pieces Together . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 High Order Convergence with Newton Approximation . . . . . . . . . . . . . . . 25

2.5 An Efficient Parallel Reciprocal Circuit . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Threshold Circuits 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Computing Arithmetic Using Threshold Circuits . . . . . . . . . . . . . . . . . . 34

3.2.1 Logspace Uniform Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 P -uniform Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Relation to Finite Field Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Simulating Finite Field Circuits . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Simulating Threshold Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Combined Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

i



ii

4 Motion Planning in Cooperative Environments 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Definitions and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Outline of Algorithm and Proof . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Constructing a Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Tracking in the Absence of Obstacles . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Tracking with Obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Motion Planning in Hostile Environments 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Basic Geometry and the Encoding of a Configuration . . . . . . . . . . . 62
5.2.2 Basic Form of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.3 Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.4 ATM Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.1 Bounded L∞-norm velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Bounded L∞-norm velocity and acceleration . . . . . . . . . . . . . . . . 74
5.3.3 Bounded L2-norm velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.4 Bounded L2-norm velocity and acceleration . . . . . . . . . . . . . . . . . 76

5.4 The Point-Robot Pursuit Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusion 79



Chapter 1

Introduction

1.1 Thesis Overview

The ultimate goal of research in theory of computation is to fully understand why some functions
are easy to compute, while others require considerable computing resources. Unfortunately, the
present state of knowledge falls far short of this goal — there are very few functions for which
we know exact complexity measures (i.e., matching upper and lower bounds).

This dissertation represents two areas of research interest, both falling under the general
area of theoretical computer science; specifically, we look at problems in parallel algorithms
(or circuit complexity) and problems from computational robotics. These areas are very active
fields of current research, with great possibilities for future work. These two areas contain
problems from two extremes of complexity— both very easy (computationally) and very difficult
problems. A common thread between these areas is the algebraic nature of the problems. In
the chapters on circuit complexity, finite algebras are repeatedly used as tools for developing
very efficient algorithms. Computational robotics problems have a strong algebraic structure,
and in fact, many problems in this area are solved by reduction to the first-order theory of the
reals.

In the first part of this work, we examine several easily computable functions under different
models of computation. Specifically, in chapter 2 we look at the parallel circuit complexity of
integer division using boolean circuits (chapter 2). Integer division is a fundamental arithmetic
problem, and has been studied with respect to both sequential and parallel models of com-
putation. The best-known sequential algorithm for integer division was given in Cook’s Ph.D.
thesis [19], but this algorithm does not parallelize well. In chapter 2, we use a novel technique to
give the best known parallel algorithm for integer division. In fact, this algorithm has optimal
size, since the size complexity is asymptotically the same as for integer multiplication.

In chapter 3, we change the model to threshold circuits, a powerful model of computation
that captures many features of neural nets. Under this model, division can be computed by
constant-depth circuits, and the algorithm presented in chapter 3 significantly reduces the size
required by previously-known constant-depth division circuits. In addition, we prove several
results that relate the power of threshold circuits to the power of circuits over finite fields; these
results give a strong algebraic structure to the class of functions computable by constant-depth
threshold circuits.

The second half of this dissertation is concerned with problems from the emerging field
of computational robotics. Clearly, as the use of robots becomes more widespread, it is vital
to examine the associated computational problems. We examine the problem of planning a
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2 CHAPTER 1. INTRODUCTION

trajectory for a robot moving through either a cooperating environment (chapter 4) or a hostile
environment (chapter 5). Simple path-planning has been extensively studied, and polynomial-
time algorithms are known [61]; however, these algorithms ignore such real-world issues as the
fact that the amount of force used to move the robot is bounded, so the computed path may
take an unacceptably long time for a real robot to traverse. In this dissertation, we include these
real-world issues in our model; the increased realism of the model is unfortunately accompanied
by a large increase in complexity. In addition, we consider further restrictions on the trajectory,
such as finding a time-optimal trajectory. These planning problems are quite computationally
intensive; in fact, one result in chapter 5 proves that motion planning in a hostile environment
is EXPTIME-hard. In light of the lower bounds, we must consider approximation algorithms
in order to obtain any practical results. In chapters 4 and 5 we show that approximation
algorithms are indeed the answer to these planning problems, and we give polynomial time
approximation algorithms for both types of planning problems. Our algorithms are the first
polynomial-time algorithms to solve the planning problems giving solutions that are provably
close to the optimal solution.

1.2 The Study of Algorithms

Inside the broad area of theory of computation, there are many subfields. The two most preva-
lent subfields are the design and analysis of algorithms and computational complexity theory.
The study of algorithms began far before the invention of the computer. For many centuries,
the notion of an algorithm has been used by mathematicians in the idea of a constructive proof.
The first known reference to the study of algorithms is Euclid’s work on calculating greatest
common divisors (this was done in approximately 300 B.C.). Of course, Euclid was trying to
reduce the amount of pencil-and-paper work required to compute GCD’s, since the notion of a
digital computer was quite inconceivable. It is interesting that approximately 2300 years later,
Euclid’s algorithm is the most efficient and widely used algorithm for computing GCD’s on
modern computers. It should be noted here that Euclid’s algorithm simply performs repeated
integer division, which is the main topic of chapters 2 and 3.

The study of algorithms is clearly the most fundamental area of computer science, since
everything running on a computer, whether in the operating system, an artificial intelligence
program, or a numerical analysis program, is an algorithm of some type. Algorithm designers
look for ways of mapping problem statements to a set of instructions that a computer can
understand and execute efficiently.

The analysis of algorithms is a skill that any computer scientist must have in order to func-
tion effectively. The goal of algorithm analysis is to predict the performance of an algorithm
(or program) on large inputs. Practically every programmer has at some time written a pro-
gram that, while working fine on small-sized sample inputs, slows down unacceptably when
full production-sized inputs are supplied. If the algorithms are correctly examined first, this
behavior can be predicted, and the programmer should not experience the surprise that usually
accompanies such a slow-down.

The area of complexity theory is concerned with the fundamental problem: what makes some
problems difficult to compute. In pursuing this question, many important concepts have been
introduced to computer science, such as the concepts of NP-complete problems, alternation, and
circuit complexity. In general, many people like to view the study of algorithms as producing
upper bounds (efficient algorithms) and complexity theory as producing lower bounds (proofs
that certain problems are actually very difficult to compute). Of course, there is a lot of overlap
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between the two areas, and such a distinction is not always clear.

The remainder of this introduction gives background for the problems considered, basic
definitions, and a summary of the results that are proved in the main text. It is assumed that
the reader is familiar with the basic notation and terminology used in complexity theory and
the analysis of algorithms (such as the complexity classes P, NP, PSPACE, and EXPTIME, as
well as the asymptotic notations O(f(n)), o(f(n)), Ω(f(n)), and Θ(f(n)). Definitions for these
terms can be found in the widely-used textbooks of theoretical computer science [2, 5, 21, 33].
It is noted here that log n represents the base 2 logarithm of n (i.e., log2 n), and log log n
represents a double logarithm (i.e., log(log n)).

1.3 Circuit Complexity

The most natural way to examine the inherent parallelism of an algorithm is to look at a graph
of the data movement of the algorithm (this is referred to as the “data flow graph”). The circuit
model of computation is a natural extension of the data flow graph that can be viewed as a
model of computation. When the nodes of the graph are restricted to computing very basic
functions (such as the boolean functions AND and OR), circuits are a very useful model for
examining the parallel complexity of easy to compute functions such as the parity function of
n input bits, or the basic arithmetic functions.

The reason for examining easy to compute functions is twofold. First, the problems exam-
ined (such as the basic arithmetic functions) are of a very fundamental nature, and are used
repeatedly in more complex calculations. Thus, it is important to understand completely the
complexity of these fundamental problems, and the most efficient ways of computing them.
Secondly, the analysis of easy functions adds important new tools to the techniques available
in proving lower bounds for more complex functions. In fact, many results in circuit com-
plexity have also given results related to the polynomial time hierarchy, and vice-versa. This
relationship with the polynomial time hierarchy was a primary reason for the initial work on
lower bounds for boolean circuits computing parity [29], and led to a strong result about the
simulation of boolean circuits by threshold circuits [3].

1.3.1 Basic Definitions

A circuit is a very general model of computation over any domain. Fix a value domain Σ. A
function basis is a set F of functions that includes a set of k-adic functions {f : Σk → Σ}, for each
k ≥ 1. A circuit Cn over function basis F is an oriented, acyclic digraph with a list of input nodes
v1, ..., vn each with fanin

1 0, a list of output nodes u1, ..., um, and a k-adic function in F labeling
each noninput node with fanin k ≥ 1. Given an input string (x1, ..., xn) ∈ Σn, we assign each
input node vi a value val(vi) = xi, for i = 1, ..., n. For each non-input node w with k predecessors
w1, ..., wk, we recursively assign w a value val(w) = f(val(w1), ..., val(wk)) ∈ Σ, where f ∈ F
is the function that labels node w. Cn finally outputs the string (val(u1), ..., val(um)) ∈ Σm
(where the output length m is fixed for the circuit Cn). Thus Cn computes a function from Σ

n

to Σm.

The size of circuit Cn is the number of edges of the circuit. The depth of circuit Cn is the
length of the longest path from any input node to an output node. A circuit family is an infinite
list of circuits C = (C1, C2, ..., Cn, ...) where Cn has n inputs. As described above, C computes
a family of functions (f1, f2, ..., fn, ...), where fn is the function of n inputs computed by circuit

1The fanin of a node is also referred to as the indegree of the node.
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Cn. Circuit family C is said to have size complexity S(n) and simultaneous depth complexity
D(n) if, for all n ≥ 0, circuit Cn has size ≤ S(n) and depth ≤ D(n).
The most common type of circuit uses the boolean value domain Σ = {0, 1}, and a function

basis consisting of the basic boolean functions AND, OR, and NOT (this includes k-adic AND
and OR for all k ≥ 2). If these circuits are restricted to those that have a constant bound on
the indegree of each node, then the resulting circuits are called bounded fanin boolean circuits.
This type of circuit is the focus of chapter 2. It is easy to show that the exact bound on fanin
does not affect the asymptotic complexity bounds obtained [46], so we assume, without loss of
generality, a bound of 2.
Another common type of circuit over the boolean domain is the class of threshold circuits.

A threshold function Thnk is defined by

Thnk (x1, ..., xn) =



1 if

n∑
i=1

xi ≥ k
0 otherwise

The boolean negation of the threshold function Thnk is denoted by Th
n
<k. Circuits using the set

of all threshold functions and their negations as the function basis are called threshold circuits.
Threshold circuits are the model of computation used in chapter 3.
The following complexity classes have been defined in the literature, with respect to the

circuit model.

ACi The class of functions computable by unbounded fanin boolean circuit families with poly-
nomial size and O(logi n) depth.

NCi The class of functions computable by bounded fanin boolean circuit families with polyno-
mial size and O(logi n) depth.

TCi The class of functions computable by threshold circuit families with polynomial size and
O(logi n) depth.

1.3.2 Circuit Uniformity

The circuit definition of the preceding section has a striking difference with other models of
computation, such as the Turing machine, RAM, and PRAM. Specifically, since there is a sepa-
rate circuit for each input length, by including a lookup table in each circuit of the family, there
is a circuit family for every possible function — even for uncomputable functions! This is the
same interesting concept that arises in Turing machines with advice (see, for example, [5], [38]).
Furthermore, it would be nice for the two main models of parallel computation (PRAMs and
circuits) to give similar complexity results.
The solution is to consider the Turing machine complexity of computing a description of

the circuit family.

Definition 1.3.1 A circuit family C = {C1, C2, ..., Cn, ...} is logspace uniform (P-uniform) if
there exists an O(log n) space bounded (polynomial time bounded, respectively) Turing machine
that, given n as input in unary, computes a binary encoding of circuit Cn.

By requiring circuit families to be logspace uniform, many nice complexity theory results
follow. For instance, the parallel computation thesis states that parallel time is polynomially
related to sequential space [44]; while this is not true for general circuits, it does hold for
logspace uniform circuit families [8]. On the other hand, P-uniform circuit families loosely
correspond to practical, constructible circuits.
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1.3.3 Division with Bounded Fanin Boolean Circuits

Of the basic arithmetic functions (addition, subtraction, multiplication, and division), division
is the most computationally complex, and the least understood. The sequential complexity
of division was examined and compared to the complexity of multiplication in Cook’s Ph.D.
thesis [19]. In fact, it is known that addition, subtraction, and multiplication of n-bit numbers
can be computed by a logspace transducer, but it is unknown whether this is possible for
division. From a result of Borodin, any function computable by a logspace-uniform bounded-
fanin boolean circuit family with polynomial size and O(log n) depth can be computed by a
Turing machine in O(log n) work-space [8]. Such circuits are known for addition, subtraction,
and multiplication, but not for division.

An interesting result of Beame, Cook, and Hoover gives a circuit family for division with
polynomial size and O(log n) depth, but the circuit family is P-uniform, and not known to
be logspace uniform (the circuit family requires tables of prime numbers whose size grows
polynomially with the input size) [7]. The first polynomial size logspace uniform circuit fam-
ily with depth less than Ω(log2 n) was given by Reif, who gave a circuit family with depth
O(log n log log n) [51]. This depth bound is still the best achieved by any logspace uniform
circuit family, although the size has been decreased by later work of Shankar and Ramachan-
dran [62] and the work in this dissertation.

The results presented in chapter 2 of this dissertation were originally presented at the Twenty
First ACM Symposium on Theory of Computing [56], and later appeared in journal form [58].
Let M(n) denote the size of the smallest O(log n) depth logspace uniform circuit family for
multiplication. The best upper bound known for this problem is from the Schönhage-Strassen
multiplication algorithm, giving M(n) = O(n log n log log n) [60]. The parallelization of the
classic sequential algorithm for division gives a circuit family with size O(M(n)) and depth
O(log2 n) [19]. As stated above, the best depth bound known for division is O(log n log log n),
and the best previously known corresponding size bound is O(n1+ε) for small, constant ε >
0 [62]. The algorithm presented in chapter 2 of this dissertation gives a logspace uniform
circuit family with O(M(n)) size and O(log n log log n) depth, so the best previously known
size and depth bounds are met simultaneously.

1.3.4 Threshold Circuit Results

In chapter 3 the model of computation is the threshold circuit. Such circuits are allowed to
have unbounded fanin, and the nodes can compute arbitrary threshold functions (notice that
AND and OR are just special cases of threshold functions). This is a very powerful model of
computation, and can compute many functions with polynomial size circuit families that have
a constant bound on their depth. In particular, the parity function is computable by constant
depth threshold circuits, but not by constant-depth unbounded-fanin boolean circuits (when
the size of both is restricted to be polynomial) [29]. Threshold circuits are a model of interest
to artificial intelligence researchers, as a neuron can be modeled by a threshold gate. In fact,
constant-depth threshold circuits correspond to several proposed models of learning, such as the
Connectionist models [26] and the Boltzmann machine [34, 1, 45]. Furthermore, recent results
have shown that it is practical to use threshold gates in VLSI constructions [30].

In fact, we show in chapter 3 that many non-trivial functions can be computed by constant
depth threshold circuits. Previously, it had been shown that multiplication and iterated sum
can be computed by polynomial size, constant depth threshold circuits [46]. Furthermore, when
we consider P-uniform circuit families, it is possible to compute iterated product and integer
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division in constant depth [52]. In chapter 3, we show how to reduce the size of constant
depth circuits for iterated product and division. Specifically, we construct a constant depth
circuit family for integer division with size O(n1+ε) for any constant ε > 0, and then show
how to use these results to give simulations (using threshold gates) of circuits over finite fields.
Furthermore, we show how finite field circuits can simulate threshold gates in constant depth,
showing an equivalence between constant depth finite field circuits and constant depth threshold
circuits. This result shows that the class of constant-depth threshold circuits (TC0) has a concise
algebraic structure. This could be an important first step in proving lower bounds for threshold
circuits.

1.4 Algorithmic Motion Planning

Now we review the problems addressed in the second part of this dissertation. With the
increasing use of industrial robots, the associated computational problems such as planning
and control are receiving a lot of attention. In a typical industrial setting, we need to plan
movements for a robot from some initial position to a given goal position. Furthermore, it is
desirable to maximize the efficiency of the robot under some cost function; we examine the
problem of finding a plan that takes as little time as possible. In the future, robots will take on
more tasks in manufacturing and manual labor, and minimizing the time required to perform
the robot’s tasks is necessary for the most efficient use of high-cost robots.

We also address a more general problem — what if some obstacles are allowed to move?
When the movement of the obstacles is easily predictable, the problem has been extensively
studied [53, 66]. We look at a single moving obstacle with unpredictable motion. In the worst
case, this can be viewed as an additional robot in the system that is a hostile adversary, and
we need to devise a strategy for reaching the goal while avoiding this adversary.

The following sections present a brief history of work on algorithmic motion planning prob-
lems, followed by a summary of results presented in chapters 4 and 5.

1.4.1 Geometric Planning Problems

The most basic motion planning problem, and the first problem examined from an algorithmic
standpoint, is simply to determine if a robot can travel through a set of fixed obstacles to
some goal position. This problem has been extensively studied by many researchers, including
Lozano-Perez and Wesley (under the name “FIND-PATH problem”) [39], Reif (using the name
“furniture mover’s problem”) [47], and Schwartz and Sharir (who use the name “piano mover’s
problem”) [61]. In all these cases, the robot is described as a set of linked polyhedra, and the
obstacles are polyhedra fixed in 3-space. The complexity of this problem depends heavily on
the specifics of the input instance. For instance, if the robot is allowed to have n links, then the
problem has been shown to be PSPACE-hard [47]; however, if the robot has only a constant
number of degrees of freedom (but the obstacle complexity can grow with n), then the problem
is solvable in polynomial time [61].

1.4.2 Dynamics Constraints

The geometric planning problems discussed above do not address the question of how long it
takes the robot to reach its goal. We look at the problem of finding trajectories when the time
to reach the goal is to be minimized. Clearly, some new parameters must be introduced into
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the problem to state how fast the robot can move, how fast it can change speed, etc. — these
parameters are called the dynamics constraints.

The simplest type of dynamics constraint is a bound on the velocity of the robot. Specifically,
for some bound vmax, the norm of the velocity vector can never exceed vmax; the exact norm used
can affect the complexity of the problem, and the two most commonly used for robotics problems
are the Euclidean norms2 L2 and L∞. If only the velocity is bounded (so arbitrarily sharp
turns are allowed), then this problem becomes exactly the shortest path problem studied in
computational geometry. Polynomial time algorithms are known for the shortest path problem
in two dimensions [63], but it has been shown that in three dimensions (using the L2 norm) the
problem becomes NP-hard (the proof actually works for any Lp norm, where p is finite) [14].
In a real world situation, the force available to move the robot is also bounded. This can be

directly represented by bounding the acceleration of the robot. As with the velocity bounds,
the acceleration bounds are stated as a bound on the norm of the acceleration. When both
velocity and acceleration are bounded, the motion planning problem is referred to as kinody-
namic motion planning — a term that reflects the presence of both kinematic constraints (the
obstacles) and dynamics constraints (the velocity and acceleration bounds). Exact solutions to
kinodynamic motion planning problems are extremely difficult to produce — the only presently
known solutions are for one dimension [41] and for two dimensions using the L∞ norm [13].
The first algorithm runs in polynomial time, while the latter requires polynomial space.

1.4.3 Approximation Algorithms

In light of the computational difficulty of motion planning problems, any practical algorithms
must be restricted to solving an approximate version of the original problem. For instance, as
stated above, the 3-dimensional shortest path problem is NP-hard, but Papadimitriou has given
a polynomial time algorithm that can find a path whose length is provably within a (1 + ε)
factor of the optimal path [43]. In other words, if the shortest path has length L, then for
any ε > 0, Papadimitriou’s algorithm will find a path that has length at most (1 + ε)L — the
running time is polynomial in both the geometric complexity of the environment and in 1ε . The
running time for this approximation problem has been improved by Clarkson, as well as giving
an O(nε log n) time approximation algorithm for two dimensions [17].
Several algorithms for kinodynamic planning have been devised, but most do not give prov-

able bounds on the goodness of the approximation. Examples of such early approximation
algorithms include the work of Sahar and Hollerbach [59] and Shiller and Dubowsky [64]. The
first polynomial time algorithm that produces a provably good approximation is due to Canny,
Donald, Reif, and Xavier, for dynamics bounds stated in terms of the L∞ norm [12]. Later
work has given approximation algorithms using the L2 norm — one such algorithm appears in
chapter 4 of this dissertation (it originally appeared in [57]), and another algorithm was devised
in concurrent, independent research by Donald and Xavier [24]. An approximation algorithm
for open-chain manipulators is given by Jacobs, Heinzinger, Canny, and Paden [37].

1.4.4 Planning in a Cooperative Environment

In chapter 4, the following motion planning problem is examined: the environment consists of
a set of polyhedral obstacles in d-dimensional space with bounded diameter. The robot is a
single point, and the L2 norms of both velocity and acceleration are bounded by values vmax

2For a vector x = (x1, x2, ..., xn), the Lp norm (for finite p) is defined by ‖x‖p =
[∑n

i=1
xpi
]1/p
, and the L∞

norm is ‖x‖∞ = max1≤i≤n |xi|.
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and amax, respectively. The robot must also respect an affine safety function δ(v) = c1v + c0
that maps velocity magnitudes to distances — at any time t, if the instantaneous velocity of
the robot is v, then the robot must be at least δ(v) distance away from all obstacles.

We look at solving an ε-approximation of the exact minimum time motion planning prob-
lem described above. In particular, if there exists an exact δ(v)-safe solution taking time T ,
then an ε-approximation algorithm guarantees that it will find a (1 − ε)δ(v)-safe solution tak-
ing time (at most) (1 + ε)T . Such an approximation algorithm for dynamics bounds stated
in terms of the L2 norm is given in chapter 4, and the running time of the algorithm is

O

(
n2 log n+

[
vmaxamaxD

ε9

]d)
, where D is the diameter of the workspace and n is the length

of the encoding of the environment. In other words, for fixed d the algorithm is fully polyno-
mial in the combinatorial and algebraic complexity of the environment, and pseudopolynomial3

in the dynamics bounds.

Canny, Donald, Reif, and Xavier examined a similar problem, the key difference being that
dynamics bounds for their problem were stated in terms of the L∞ norm [12]. The L2 norm is
a more natural measure because it removes the dependence on the orientation of the coordinate
axes. The key to both algorithms is the proof of a tracking lemma, which states that for any
exact robot trajectory, there is a “close” approximating trajectory that travels only between
discrete points. In fact, in all aspects other than the tracking lemma, the algorithms of Canny,
Donald, Reif, and Xavier and the algorithm in chapter 4 are very similar. The tracking lemma
in this dissertation is much more complex than that of Canny, Donald, Reif, and Xavier — this
is necessary due to the increased complexity introduced by using the L2 norm. In particular,
with the L∞ norm, each dimension has dynamics bounds that are independent of the other
dimensions — thus the tracking lemma needs to be proved in only one dimension. The L2 norm
does not possess such a nice independence property, and the result is the increased complexity
of the tracking lemma proof.

1.4.5 Planning in a Hostile Environment

In chapter 5, we examine a similar motion planning planning problem, but add a moving,
unpredictable obstacle. Since the obstacle growing techniques [39] do not work in a situation
with several moving obstacles, we allow both our robot and the moving obstacle to be polyhedral
objects. Since the motion of this obstacle is unpredictable (but it will be restricted by dynamics
constraints), any successful motion plan must be successful even in the worst case — against a
hostile adversary. The motion plan for this problem is allowed to be dynamic; that is, it can
change during execution depending on the current position of the moving obstacle. We call
such a problem a pursuit game, and the goal is to devise a strategy for a robot (the evader)
that successfully avoids the moving obstacle (the pursuer).

It turns out that a very simple version of this problem — when the pursuer and evader have
bounds on just the L2 norm of their velocity and the game takes place in 3-space — is very hard
(EXPTIME-hard, to be exact). The proof of this lower bound does not even require that the
discovered strategy be time-minimum, so the simple reachability problem is very hard. Recall
that without the pursuer, the reachability problem can be solved in polynomial time [61]. This
is the first provably intractable robotics problem with perfect information.

In addition, by extending the tracking lemma from chapter 4, we give provably good approx-
imation algorithms to solve pursuit games with various types of dynamics constraints: either
velocity or both velocity and acceleration may be bounded, and the bound may be in terms of

3This terminology comes from [42].
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either the L2 or the L∞ norm. The approximation algorithm uses a notion of safety that is sim-
ilar to that used in approximate kinodynamic planning, adding the constraint that the evader
needs to keep a safe distance between itself and the pursuer, as well as the static obstacles.
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Chapter 2

Newton Iteration and Division

2.1 Introduction

At the heart of all numerical computations are the basic operations of addition, subtraction,
multiplication, and division (also, to a lesser extent, more complex operations such as powering,
finding square roots, computing logarithms, etc.). It is vital to study these problems from the
standpoint of parallel algorithms, because even in commonly used single processor machines
the basic operations are done in parallel (by parallel paths through low-level logic circuits).

Early in school, a student learns how to perform the functions of addition, subtraction,
multiplication, and division. In fact, these topics are usually presented in this order due to
the increasing difficulty of the operations. Studies in parallel algorithms support the sense of
difficulty assigned by our elementary school teachers — optimal algorithms exist for addition
and subtraction, while good algorithms exist for multiplication (even the best of which is not
known to be optimal), and division seems to be even harder. For more information on the
operations of addition and subtraction, see the fantastic overview written by Pippenger [46];
for multiplication see either [2] or the original paper by Schönhage and Strassen [60].

In this chapter, the parallel complexity of division is compared with the complexity of the
other elementary operations. The problem of integer division is defined to be a function that
takes a pair of input values (y, x), and produces the pair of values (q, r) such that y = qx+ r,
where 0 ≤ r < x (i.e., a quotient and a remainder). Reduction of division to multiplication via
Newton approximation has been shown to provide good sequential results [19], but these results
do not translate well to parallel algorithms. Rather, a modified version of Newton approxima-
tion (called high order Newton approximation for reasons that will become clear) is used to
obtain parallel results that are almost optimal. On the way to the results for division, it will
be discovered that finding limited integer powers is vital for division, so ways of accomplishing
this are discussed.
As is standard practice when comparing the complexity of algorithms, the focus of this

chapter will be on reductions to other problems. It is sufficient to consider the problem of
finding reciprocals in place of division. As we are considering only integer operations, the idea
of a reciprocal is not clear — in general, the real reciprocal of an integer will not be an integer.
Therefore, given an n-bit input integer x, the integer reciprocal is defined as the value⌊

22n

x

⌋
.

Notice that this is simply the shifted binary fixed point approximation to the real reciprocal;

11
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it should be obvious how the reciprocal can be used with a constant number of multiplications
to solve the division problem. This definition has been taken from [2].

The notation ≤sd denotes a constant size and depth reduction; in other words, if f and
g are two functions, then f ≤sd g if, given any circuit family computing g in size S(n) and
depth D(n), a circuit family can be constructed which computes f in size O(S(n)) and depth
O(D(n)). Letting SQ denote the function that squares an n-bit integer and MULT denote
the problem of multiplying two n-bit integers, it is easy to see that SQ ≤sd MULT. It is also
true, but not quite as obvious, that MULT ≤sd SQ since xy = 1

2 [(x+ y)
2 − x2 − y2] (addition

is easily accomplished, and the multiplication by 12 is simply a binary shift by one bit). The
notation ≡sd is used for two problems that are constant size-depth reducible to each other, so
SQ ≡sd MULT as just shown.
Re-examining our rather arbitrary hierarchy of difficulty for arithmetic problems, a good

candidate for a reduction of division would be multiplication. In fact, letting REC denote the
integer reciprocal problem and using the new notation, it can be shown that SQ ≤sd REC by

x2 =
1

1
x − 1

x+1

− x.1 (2.1)

Noting that the ≤sd relation is transitive, this also means that MULT ≤sd REC, so finding
reciprocals is at least as hard (in the sense of constant size-depth reductions) as multiplication.
This verifies the fact that multiplication is a good candidate when trying to reduce division.

Throughout this chapter, the notation M(n) will be used to represent the smallest size
required by any circuit family that multiplies two n-bit numbers in O(log n) depth. As there
are no known optimal algorithms for multiplication at this time, the exact value of M(n) is
unknown; however, the value is easily lower-bounded by M(n) = Ω(n) and upper-bounded
by M(n) = O(n log n log log n) (the upper bound is due to an algorithm by Schönhage and
Strassen [60]). It is assumed that M(n) satisfies the equation

M(cn) ≤ cM(n) (2.2)

for all positive c ≤ 1. Almost all complexity measures that are Ω(n) satisfy this bound, so the
assumption is not too great.

In the text that follows, the notation RECIPROCAL(x, n) refers to the function of integer
reciprocal, without reference to a particular algorithm; the arguments x and n denote the input
value and the size of the input, respectively. When referring to specific algorithms that compute
the reciprocal function, the notation used will be RECIP1(x, n), RECIP2(x, n), etc.

2.2 Newton Approximation

Newton approximation is a tool commonly used by numerical analysts to find the zeros of
a function. In numerical analysis terms, Newton approximation (in general) has quadratic
convergence — what this means to the division problem will become clear shortly.

Consider a differentiable function f(x) that has first derivative f ′(x) and has a zero at x0
(so f(x0) = 0). Assuming that f

′(x) is non-zero in a reasonable neighborhood of x0, we can
make an initial guess for x0 (call the initial guess y1) and use the slope f

′(y1) to estimate how
1This is actually an abuse of notation, since equation (2.1) uses real reciprocals instead of the defined integer

reciprocal; however, it is not hard to see how the integer reciprocal can be used to approximate real reciprocals
in the calculation of equation (2.1).
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far y1 is from the zero. This produces a new estimate for x0 (call it y2) and the process can be
repeated producing a sequence of estimates y1, y2, y3, ... that converges to x0 for all well-behaved
functions and good initial approximations. In mathematical terms, this becomes

yi+1 = yi − f(yi)
f ′(yi)

. (2.3)

The convergence rate for the general case is beyond the scope of interest of this dissertation
— the interested reader can consult any introductory numerical analysis text (for example,
see [10]).

Consider the function f(y) = 1 − 1
xy . Obviously,

1
x is a zero of f , and the derivative

f ′(y) = 1
xy2
is non-zero for all y 6= 0. Using this function f , equation (2.3) gives a sequence

defined by

yi+1 = 2yi − xy2i . (2.4)

This equation will take a good initial estimate and converge to 1x . A word of warning is appro-
priate here — notice how easily we slipped into solving the problem of real reciprocals instead
of integer reciprocals. Fortunately, the problem is not too great — as was noted before, the in-
teger reciprocal is simply a scaled representation of the fixed point binary approximation to the
real reciprocal. Re-writing the above equation with this scaling in mind, the following equation
generates a sequence that converges to the integer reciprocal using only integer operations.

yi+1 =

⌊
22n+1yi − xy2i

22n

⌋
(2.5)

This formula works quite well, and direct implementation yields a circuit that computes
integer reciprocals in size O(M(n) log n) and depth O(log2 n). The log n multiplier in the size
comes from the fact that Θ(log n) iterations of equation (2.5) are needed, each of which requires
a multiplication of n bit values.

Noticing that the approximation yi is very inaccurate in the early stages, it seems pointless
to do calculations with all the erroneous bits of yi. In fact, this observation produces a new
algorithm which removes the log n multiplier from the size bound above; the algorithm that
accomplishes this is shown in figure 2.1, and proofs of correctness and complexity are given
in theorem 2.2.1. The approximation formula used in figure 2.1 looks different from that in
equation (2.5), but the only difference is due to the new scaling required by having only n2 bits
for yi.

2 The “for loop” in algorithm RECIP1 is also a new addition; it is present to overcome
errors induced by using fixed point approximation to real numbers. The usefulness of this
adjustment stage will become apparent from the proof of theorem 2.2.1. Algorithm RECIP1 is
originally due to Cook [19], and can be found in [2]. The parallel analysis found here is original,
and is given as a basis upon which we build our more efficient algorithm.

For the remainder of this section, as well as in sections 4 and 5, the n-bit input x is assumed
to satisfy 2n−1 ≤ x < 2n (i.e., the high-order bit is set). The algorithms may be modified so
they do not require this assumption by simply shifting x (by bits) into the appropriate range,
performing the algorithms found in this chapter, and shifting the results back into the proper
range. The complexity of the shifting stages is negligible compared to the complexity of the
algorithms discussed. Similarly, it is assumed that n is a power of 2.

2One way to view this is that now the precision of the fixed point representation is changed at each stage;
at the smallest stage, the fractional precision is only ± 1

2
, but at the next stage the precision is ± 1

4
, and then

± 1
16
,± 1

256
, ...
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Algorithm RECIP1(x, n);
if n = 1
then begin
y ← 4;
end;

else begin

t← RECIP1(
⌊
x
2n/2

⌋
, n2 );

y ←
⌊
2
3
2
n+1t−xt2
2n

⌋
;

for i← 3 downto 0 do
if (x(y + 2i) ≤ 22n)
then begin
y ← y + 2i;
end;

end;
return (y);

end.

Figure 2.1: Algorithm RECIP1

Theorem 2.2.1 Algorithm RECIP1 in figure 2.1 correctly computes the integer reciprocal of x,
and is realized with a circuit family of size O(M(n)) and depth O(log2 n).

Proof: The following proof of the correctness is rather tedious; this comes from the fact that
fixed point approximations to real numbers are used, so small errors (from rounding or truncat-
ing) are introduced at various points. A very simple way to get a feeling for why this method
works is to examine how the error of an approximation is affected by equation (2.4); while this
is not a proof that algorithm RECIP1 is correct, it does provide insight that is useful if the
following proof is found to be confusing.
To simplify notation, let r represent the value returned by RECIP1(x, n). To prove the

correctness of RECIP1, it is necessary to show that r =
⌊
22n

x

⌋
; in other words, xr = 22n − s

where 0 ≤ s < x. The proof is by induction on n; the correct value for n = 1 is stated explicitly
in the algorithm.
Assume that the algorithm returns a correct value for inputs of size n2 . Let t be the value of

RECIP1(
⌊
x
2n/2

⌋
, n2 ) as in figure 2.1, and let d = 2

3
2
n+1t− xt2. Also, denote the most significant

n
2 bits by x1 and the least significant

n
2 bits by x0, so x = x12

n/2+x0. The value d can now be
written as

d = 2
3
2
n+1t− t2(x12n/2 + x0).

The value of interest in this proof is xr, so first we will find xd and then bound the difference
between this and xr.

xd = 22n+1x1t+ 2
3
2
n+1x0t− t2(x12n/2 + x0)2

Using the induction hypothesis (that x1t = 2
n − s′, where 0 ≤ s′ < x1), this can be simplified

to
xd = 23n − (2n/2s′ − tx0)2.
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Dividing by 2n, the result is

xd

2n
= 22n − (s′ − tx0

2n/2
)2.

Noting that s′ and tx0
2n/2

are both positive and that the difference of these two is squared, it is
possible to bound (

s′ − tx0
2n/2

)2
≤ max

{
(s′)2,

(
tx0

2n/2

)2}
.

By the induction hypothesis, s′ < x1 < 2n/2, so (s′)2 < 2n/2x1 ≤ x. Furthermore,
(
tx0

2n/2

)2
≤
(
2n/2x0
x1

)2
<
(
2n/2+1

)2
= 2n+2 ≤ 8x,

so (s′ − tx0
2n/2
)2 < 8x. In other words,

xd

2n
> 22n − 8x.

Now, considering the value y calculated by the Newton approximation equation,

xy = x

⌊
d

2n

⌋
> x(

d

2n
− 1) = xd

2n
− x > 22n − 9x

The adjustment stage of RECIP1 will adjust the least significant four bits of y to the correct
value, as long as RECIPROCAL(x, n) − y ≤ 15 entering the adjustment stage. It has just
been shown that, in fact, RECIPROCAL(x, n) − y ≤ 9, so RECIP1 correctly returns the integer
reciprocal.

The complexity of the circuit is very straight-forward to calculate. To calculate the size,
notice that RECIP1 performs only a constant number of multiplications and simpler operations
on O(n) bit numbers in addition to the recursive call. In other words, the recurrence

S(n) ≤ S(n
2
) + cM(n) (2.6)

S(1) = 1

describes the size of the circuit for RECIP1. The solution to equation (2.6) is given by

S(n) ≤ c
log n∑
i=0

M(
n

2i
).

From the assumption of equation (2.2), we know that M( n
2i
) ≤ 1

2i
M(n), so the resulting size is

S(n) = O(M(n)).

The depth of each level of recursion is bounded by O(log n), and since there are log n stages,
the total depth is bounded by O(log2 n). This is a rather simplistic depth analysis, but closer
examination shows that this is the tightest upper bound possible.
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Algorithm REPEATSQ(x,m);
{Consider m in its binary representation:

m = mblogmc2blogmc + · · ·+m222 +m121 +m020}
i← 0;
p← x;
y ← 1;
while i ≤ log n do begin
if mi = 1
then begin
y ← yp;
end;

p← p2;
end;

end.

Figure 2.2: Repeated squaring method of taking powers

2.3 Integer Powering

The seemingly unrelated problems of integer reciprocal and integer powering are actually very
closely related. In fact, it has been shown by Beame, Cook, and Hoover [7] that the two
problems are equivalent with respect to constant depth reductions.3 A survey of the research
on integer division shows that all known efficient parallel reciprocal algorithms use powering as
an integral part (see, for example, [7], [62], and [56]).
As an introduction to powering, consider a simple powering algorithm; the problem is to

raise an n-bit number x to the m-th power, where m ≤ n. Now write m in its binary notation,
so m = mblogmc2blogmc + · · · +m222 +m121 +m020. An algorithm (called repeated squaring)
that takes advantage of the binary representation of m is shown in figure 2.2.
The complexity analysis of this algorithm is particularly easy, resulting in a circuit family

with size O(M(nm)) and depth O(log n logm). Note that this is considerably better than
simply multiplying x by itself m times which takes size O(mM(nm)) and depth Θ(m log n).
With this algorithm in mind, consider the reciprocal algorithm of the previous section; at

first glance, RECIP1 doesn’t seem to take any powers greater than squaring yi. However, if a
more global view is invoked, this squared term is again squared in the next stage, and repeatedly
squared until the end of the algorithm. In other words, the algorithm actually takes large powers
using the repeated squaring algorithm! An observant reader would have noticed that the depth
of the algorithm RECIP1 is the same as the depth of the algorithm REPEATSQ (with m = n).
Now it can be seen that this is no coincidence — RECIP1 was actually performing operations
almost identical to REPEATSQ.
An interesting question now arises: Can reciprocals be computed in depth smaller than

Ω(log2 n) if there were an algorithm for computing powers in small depth? Indeed, this is the
case; in fact, with respect to constant depth reductions that preserve polynomial size (note the
difference between this and constant size and depth reduction), it has been shown that division
and powering are equivalent [7]. Unfortunately, finding small depth circuits for powering seems

3A constant depth reduction is similar to the constant size and depth reduction mentioned earlier in this
chapter, except that the size can increase by a polynomial amount.
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to be as hard as looking at the reciprocal problem directly. What follows is a description of a
powering algorithm that only requires O(log n log log n) depth (for m = n). The algorithm is
rather confusing to people who haven’t seen anything like it before; a good “warm-up” exercise
would be to read and understand the multiplication algorithm of Schönhage and Strassen (a
good description can be found in [2]). The algorithm presented here consists of two parts:
reducing the size of the input number x, and reducing the power m.

2.3.1 Bit Reduction

Again, we wish to raise an n-bit number x to a power m, where m ≤ n. The number x has at
most d =

⌊
n
log b

⌋
+ 1 digits in base b notation and can be written as

x = xd−1bd−1 + · · ·+ x2b2 + x1b+ x0. (2.7)

If an indeterminate z is substituted for the occurrences of b that are raised to a power, then x
can be represented by a polynomial p(z) = xd−1zd−1 + · · ·+ x2z2 + x1z1 + x0, where p(b) = x.
Operations with such polynomials mirror the same operations performed on the numbers

themselves, so, for example, if x is represented by p(z) and y is represented by q(z), then the
product of the two polynomials has the property that p(z)q(z)|z=b = p(b)q(b) = xy.4 The
current interest is in powering, and it can be noticed that if x is represented by p(z) and m is
an integer, then [p(z)]m|z=b = [p(b)]m = xm. Efficient polynomial arithmetic is made possible
by a domain change through Fourier transforms; we now see how this is done.
Returning to the original problem, let x be an n-bit number, where n is a power of 2 — say

n = 2p. The input x can be broken into k = 2r blocks of l = 2p−r bits each, so letting b = 2l,
equation (2.7) becomes

x = xk−12l(k−1) + · · ·+ x222l + x12l + x0.

The polynomial representation of x (as described above) is therefore p(z) = xk−1zk−1 + · · · +
x2z

2 + x1z + x0; notice that p(2
l) = x.

To raise x to the mth power, simply find the polynomial [p(z)]m and evaluate at z = 2l.
Unfortunately, the polynomial [p(z)]m has degree m(k − 1), which is too large for an efficient
powering algorithm (it is an interesting exercise to follow the development of the powering
algorithm using all terms of [p(z)]m to see exactly where things go amiss).
Consider calculating [p(z)]m (mod zk− 1). When the value z = 2l is inserted, the result is

xm (mod 2n−1); by padding the input with zeros and increasing n to insure that 2n−1 > xm,
this method produces the exact answer. Furthermore, polynomials modulo zk − 1 never have
degree greater than k−1, so the problem of growing polynomial degrees has disappeared. With
this in mind, the subject of most of the remainder of this section will be the problem of modular
powering.
Let b(z) = bm(k−1)zm(k−1) + · · · + b2z2 + b1z + b0 be the exact value of [p(z)]m, and let

d(z) = dk−1zk−1+ · · ·+ d1z+ d0 be the reduction of b(z) modulo zk − 1 so that d(z) has degree
less than k. Since zk ≡ 1 (mod zk − 1), it is easy to see that for i = 0, 1, ..., k − 1,

di =
m−1∑
j=0

bjk+i.

4The notation p(x)|x=a means the polynomial p(x) evaluated at x = a; in other words, p(a). Similarly,
p(z)q(z)|z=b means to multiply the polynomials p(z) and q(z), and evaluate the resulting polynomial at z = b.
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All bi with i > m(k − 1) are assumed to be zero. Let D = (d0, d1, ..., dk−1) and X =
(x0, x1, ..., xk−1) denote vectors of the coefficients of d(z) and p(z), respectively. The following
lemma demonstrates an efficient way of computing the modular power polynomial d(x) using
Discrete Fourier Transforms (DFTs).5 This is a standard method (introduced for powering
in [51]) called positive wrapped convolution.

Lemma 2.3.1 Let X and D be defined as above, and let DFTk(X) = (t0, t1, ..., tk−1). Then
DFT−1k ((t

m
0 , t

m
1 , ..., t

m
k−1)) = D.

Proof: Let ω be a principal kth root of unity. By the definition of the DFT,

ti =
k−1∑
j=0

xjω
ij = p(ωi)

for all i = 0, 1, ..., k − 1, where ω is a principal kth root of unity. Raising each ti to the mth
power gives

tmi = [p(ω
i)]m = [p(z)]m|z=ωi =

m(k−1)∑
j=0

bjω
ij =

m−1∑
p=0

k−1∑
q=0

bpk+qω
i(pk+q).

But ωi(pk+q) = (ωk)ipωiq = ωiq since ω is a kth root of unity, so

tmi =
m−1∑
p=0

k−1∑
q=0

bpk+qω
iq =

k−1∑
q=0


m−1∑
p=0

bpk+q


ωiq = k−1∑

q=0

dqω
iq.

By the definition of the DFT, this is simply the ith term of DFTk(D). As this holds for all
i = 0, 1, ..., k − 1, it must be true that DFT−1k ((tm0 , tm1 , ..., tmk−1)) = D.
The Fourier transform of a k-vector (representing a degree k − 1 polynomial) requires a

principal k-th root of unity ω. The polynomials that represent integers have integer coefficients,
and to avoid doing computations over the complex field, it is possible to use finite rings as the
basis of our computation. The ring of integers modulo 2k − 1 has a principal k-th root of
unity of ω = 2, giving this ring the further nice property that multiplication by powers of ω
is easily accomplished by bit shifts. Since computations on each element of X are now done
modulo 2k−1 it is clear how the original problem (powering an n-bit number modulo 2n−1) is
reduced to smaller subproblems (powering k-bit numbers modulo 2k − 1). This reduction can
be repeated until the size of the subproblems is trivial. Furthermore, k−1 (mod 2k − 1) exists
by insuring that k is a power of 2, so the inverse DFT is possible.
A problem arises from the fact that the previous discussion of powering assumes that the

exact values for the coefficients of [p(z)]m (mod zk−1) are known, and the previous paragraph
refers to only finding the coefficients modulo 2k−1. The following lemma addresses this problem
by showing how large to make k to insure that the coefficients are unambiguously represented
in this ring (i.e., the coefficients are less than 2k − 1). A similar lemma was proved in [51], but
the following version is more exact.

Lemma 2.3.2 The coefficients of [p(z)]m (mod zk − 1) are less than 2k − 1 if
2r − r(m− 1)− lm > 0 (2.8)

(where r, l, and m are defined in the preceding text).

5If the reader is unfamiliar with the Fourier transform or the Fast Fourier Transform algorithm, an introduc-
tory level discussion can be found in [2].
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Proof: First, it is proved by induction that the coefficients of the polynomial [p(z)]m (mod zk−
1) (calculated with coefficients from Z) are less than or equal to km−1(2l− 1)m for m = 1, 2, ....
The basis of the induction is easy; simply let m = 1 and the claimed bound becomes 2l − 1.
The coefficients of p(z) are all less than or equal to 2l − 1 since each coefficient is l bits long.
Now assume the claim is true form−1 (that is, all of the coefficients of [p(z)]m−1 (mod zk−

1) are less than or equal to km−2(2l − 1)m−1). Let the expansion of p(z) and [p(z)]m−1
(mod zk − 1) be as follows:

p(z) = xk−1zk−1 + xk−2zk−2 + · · ·+ x2z2 + x1z + x0
[p(z)]m−1 = yk−1zk−1 + yk−2zk−2 + · · ·+ y2z2 + y1z + y0

Notice that since zi ≡ zi (mod k) (mod zk − 1),

[p(z)]m = [p(z)][p(z)]m−1 ≡
k−1∑
i=0


k−1∑
j=0

xjyi−j (mod k)


 zi (mod zk − 1).

Regardless of the particular values of i and j, it must be true that xj ≤ 2l − 1 and
yi−j (mod k) ≤ km−2(2l−1)m−1 (by the induction hypothesis), so xjyi−j (mod k) ≤ km−2(2l−1)m.
Since there are k terms like this added together for each coefficient of [p(z)]m (mod zk − 1),
each coefficient must be less than or equal to km−1(2l − 1)m, and the proof by induction is
finished.
Returning to the lemma, condition (2.8) states that 2r > r(m − 1) + lm. In other words,

taking each side as an exponent, 2(2
r) > 2r(m−1)2lm, and since k = 2r this implies that

km−12lm < 2k. Loosening the inequality slightly, this implies that (for m ≥ 1)
km−1(2l − 1)m < 2k − 1. (2.9)

The previous inductive proof showed that each coefficient in the polynomial [p(z)]m(mod
zk − 1) must be less than or equal to the left hand side of inequality (2.9), so each coefficient
must also be less than 2k − 1, completing the proof of the lemma.
As an example of the reduction technique just described, consider a single stage of bit

reduction as shown in figure 2.3. The value for k comes from calculations involving lemma 2.3.2;
lemma 2.3.3 shows how this works. Notice the call on MODPOWER in REDUCE1 — this is a
recursive call that is left unspecified for the moment. As it turns out, a second type of reduction
will be needed for efficient powering, and the recursive call (named MODPOWER here) may be

on a different type of reduction. Notice the new assumption that m ≤ n 38 . This assumption
simply makes the lemma easier to prove, and will not affect the final powering result at all (in
fact, it will become apparent that this is the result of passing the assumption m ≤ n down
through several lemmas).

Lemma 2.3.3 Let m be an integer satisfying m ≥ 16 and m ≤ n 38 . Then assuming that
MODPOWER(ti,m, k) correctly returns t

m
i (mod 2k − 1), the reduction REDUCE1 shown in

figure 2.3 correctly returns xm (mod 2n − 1). Furthermore, if the call on MODPOWER requires
size S(m,k) and depth D(m,k), then REDUCE1 requires total size kS(m,k) +O(nm

4
3 log n) and

total depth D(m,k) +O(log n).

Proof: The correctness of REDUCE1 follows directly from the previous discussion with the
important points being lemma 2.3.1 and lemma 2.3.2. The only verification that needs to be



20 CHAPTER 2. NEWTON ITERATION AND DIVISION

Algorithm REDUCE1(x,m, n);
p← log n;
q ← dlogme;
r ←

⌈
p
2 +

2q
3

⌉
;

k ← 2r;
Divide x into k blocks of l = 2p−r bits each as (x0, x1, ..., xk−1);
(t0, t1, ..., tk−1)← DFTk(x0, x1, ..., xk−1);
for all i = 0, 1, ..., k − 1 pardo begin
ui ← MODPOWER(ti,m, k);

end;

(y0, y1, ..., yk−1)← DFT−1k (u0, u1, ..., uk−1);
y ← y0 + y12l + y222l + · · ·+ yk−12(k−1)l (mod 2n − 1);
return (y);

end.

Figure 2.3: Powering reduction style 1

done is that the condition (2.8) of lemma 2.3.2 holds; that is, that 2r − r(m − 1) − lm > 0.
What follows is basically an exercise in minimizing the function on the left hand side.

From figure 2.3, let r =
⌈
p
2 +

2q
3

⌉
. To avoid the ceiling function write r as p2 +

2q
3 + ε, where

ε is some value satisfying 0 ≤ ε < 1. Obviously, if condition (2.8) holds for all ε in this interval,
then the condition must also hold with the ceiling. Substituting this value for r and letting
m = 2q and l = 2p−r, the left hand side of condition (2.8) becomes

f(p, q, ε) = 2
p
2
+ 2q
3
+ε −

(
p

2
+
2q

3
+ ε

)
(2q − 1)− 2p2+ q3−ε.

This formula is quite messy, but can be simplified greatly just by taking the partial derivative
with respect to ε (which will reveal a lot of useful information).

∂f

∂ε
(p, q, ε) = 2

p
2
+ q
3 ln 2

(
2ε+

q
3 + 2−ε

)
− (2q − 1)

This function is easily minimized for a given p and q (for an easy trick, substitute t = 2ε and
minimize with respect to t) when ε = − q6 . Substituting this value into ∂f∂ε , for any p and q the
minimum value of the partial derivative with respect to ε is

2
p
2
+ q
2
+1 ln 2− (2q − 1) . (2.10)

In terms of p and q, the assumption that m ≤ n 38 translates to q ≤ 3p
8 (or equivalently, that

p ≥ 8q
3 ). We wish to show that equation (2.10) is greater than zero for all valid p and q. For

any given q, equation (2.10) is minimum when p is at its minimum — in other words, when
p = 8q

3 . Making this substitution, equation (2.10) becomes

2
11q
6
+1 ln 2− (2q − 1),

which is easy to show greater than zero for all q ≥ 0.
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The past few paragraphs have shown that for all valid p, q, and ε, the derivative ∂f∂ε (p, q, ε) >
0. In other words, for all valid p and q, f(p, q, ε) is increasing in ε; therefore, for all valid p, q,
and ε,

f(p, q, ε) ≥ f(p, q, 0) = 2 p2+ 2q3 − 2p2+ q3 −
(
p

2
+
2q

3

)
(2q − 1) .

Differentiating the right hand side with respect to p gives

∂f(p, q, 0)

∂p
= 2

p
2
ln 2

2

(
2
2q
3 − 2 q3

)
− 2

q − 1
2
.

This is obviously increasing in p, so is minimized when p is minimum; after making the substi-
tution p = 8q

3 and doing some rearranging, the above becomes

1

2

[(
22q − 2 5q3

)
ln 2− (2q − 1)

]
,

which is easily shown to be greater than zero for all q ≥ 4. In other words, for a given q ≥ 4,
f(p, q, 0) is increasing in p, so to minimize f(p, q, 0), again set p to 8q3 . Therefore,

f(p, q, 0) ≥ f(8q
3
, q, 0) = 22q − 2 5q3 − 2q (2q − 1) ,

which is greater than zero for all q ≥ 4.
Summarizing, it has been shown that for all valid p, q, and ε,

f(p, q, ε) ≥ f(p, q, 0) ≥ f(8q
3
, q, 0) ≥ 0,

so condition (2.8) must hold, and reduction REDUCE1 gives the correct answer by lemma 2.3.2,
lemma 2.3.1, and the properties of polynomials discussed in the text before lemma 2.3.1.
The complexity of REDUCE1 relies on two results beyond the scope of this chapter: namely,

that DFTk and DFT
−1
k can be computed in size O(k

2 log k) and depth O(log n) by using the
Cooley-Tukey algorithm [20], and the evaluation of [p(z)]m|z=2l can be done in size O(k2) and
depth O(log n). In other words, all steps except the call on MODPOWER can be done in size
O(k2 log k) and depth O(log n). Furthermore, since

k = 2d p2+ 2q3 e ≤ 2p2+ 2q3 +1 = 2n 12m 2
3 ,

the above size can be written as O(nm
4
3 log n). Including the size for the k calls onMODPOWER,

the resulting size is kS(m,k) + O(nm
4
3 log n). All recursive calls are done in parallel, so the

total depth is D(m,k) +O(log n).
The problem with repeatedly applying REDUCE1 is that the requirements of lemma 2.3.3

make reduction to a trivial problem size impossible (since n must be at least m
8
3 ); however, it

is possible to reduce the power as well as the number of bits.

2.3.2 Power Reduction

Consider raising a number x to the mth power. If m is a perfect square with w =
√
m, it is easy

to see that xm = (xw)w; unfortunately, m is usually not a perfect square. To handle the more
common case, let v = b√mc and calculate (xv)v . Of course, this is not the desired answer, but
notice that if e = m − v2 is the error in the exponent of this approximation, e can be easily
bounded by

e = m− v2 ≤ ((v + 1)2 − 1)− v2 = 2v = 2b√mc.
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Algorithm REDUCE2(x,m, n);
p← b√mc;
In Parallel do part1, part2

part1: begin
t← MODPOWER(x, p, n);
u← MODPOWER(t, p, n);
end;

part2: begin
e← m− p2;
e′ ← ⌊

e
2

⌋
;

v ← MODPOWER(x, e′, n);
if (2e′ = e)
then begin
w ← v2 (mod 2n − 1);
end;

else begin
w ← xv2 (mod 2n − 1);
end;

end;
y ← uw (mod 2n − 1);
return (y);

end.

Figure 2.4: Powering reduction style 2

Letting e′ = b e2c, xe
′
can be computed, squared, and multiplied by x (if e is odd) to achieve xe.

Notice that this computation of xe can be done in parallel with the computation of (xv)v, so
the original problem has been reduced to 3 smaller powerings (each of which raises a number
to a power less than or equal to

√
m) and a constant number of multiplications. This reduction

is called REDUCE2 and is shown in figure 2.4.

The correctness of REDUCE2 follows easily from the above discussion, and the complexity
analysis is simple, so the following lemma is stated without proof.

Lemma 2.3.4 Assuming MODPOWER(t,m, n) correctly returns the value tm (mod 2n− 1) for
all t, m, and n, the reduction REDUCE2 shown in figure 2.4 correctly returns xm (mod 2n −
1). Furthermore, if the call on MODPOWER(t,m, n) requires size S(m,n) and depth D(m,n),
then modular powering via REDUCE2 requires total size 3S(

√
m,n) + O(M(n)) and total depth

2D(
√
m,n) +O(log n).

Again, there is a problem with using just the reduction REDUCE2—while the correct answer
is returned, the number of subproblems grows too rapidly, and the depth of the powering circuit
using just REDUCE2 is Θ(log n logm). Fortunately, in the design of REDUCE1 and REDUCE2
there were some subtle adjustments made (such as the choice for r in REDUCE1) that allow the
two reductions to work very well together. Combining the two reductions is addressed in the
following section.



2.3. INTEGER POWERING 23

2.3.3 Putting the Pieces Together

The final modular power algorithm consists of an initial reduction using REDUCE2 followed by
a test to see if the power has been reduced to smaller than 16. If the power is less than 16,
then the result can be computed using the REPEATSQ algorithm presented at the beginning of
this section (taking size O(M(n)) and depth O(log n)); otherwise, the subproblems are further
reduced by two applications of REDUCE1. All three of these reductions can be viewed together
as a single “composite reduction” that produces subproblems with reduced size (i.e., number of
bits) and reduced power. A proof of the correctness of this algorithm, along with the complexity
analysis, is given in the following theorem.

Theorem 2.3.5 Let x be an n-bit integer, and m be an integer such that m2 ≤ n. The algo-
rithm just described correctly computes xm (mod 2n−1) in size O(nm4 log n log log n) and depth
O(log n+ logm log logm).

Proof: The correctness of the above algorithm is proved by induction on the number of complete
composite reductions required before the power is reduced below 16. If no reductions are
required, the result is correct by the correctness of algorithm REPEATSQ. Assume that R ≥ 1
reductions are required — by the condition of the theorem, m ≤ n 12 , so after the first reduction
using REDUCE2, each subproblem of raising an n-bit number to the m′th power is such that
m′ ≤ n 14 . (Note that this means the condition for lemma 2.3.3 is satisfied.)
After the first reduction via REDUCE1, each subproblem has k ≥ n 12 (m′) 23 bits. (Notice

that

m′ = (m′)
3
4 (m′)

1
4 ≤ n 316 (m′) 14 =

(
n
1
2 (m′)

2
3

) 3
8 ≤ k 38 ,

so the condition for lemma 2.3.3 is again satisfied.)

Following the second reduction via REDUCE1, each subproblem has k′ ≥ k 12 (m′) 23 bits;
using the previous bounds for k, (m′)2 can be bounded as

(m′)2 = (m′)(m′) ≤ n 14 (m′) =
(
n
1
2 (m′)

2
3

) 1
2 (m′)

2
3 ≤ k 12 (m′) 23 ≤ k′.

In other words, after one composite reduction each subproblem of raising a k′-bit number to
the m′th power satisfies (m′)2 ≤ k′. Only R − 1 composite reductions are required for these
subproblems (since R reductions were required for the original problem), and since (m′)2 ≤ k′,
the induction hypothesis applies to say that all these subproblems are correctly solved.
Going backwards through each individual reduction in the composite reduction, it has been

noted that the conditions for lemmas 2.3.3 and 2.3.4 have been satisfied, so the correctness of
the algorithm follows directly from these lemmas.
Now examine the size required for this algorithm. Let S(m,n) denote the size of raising an

n-bit number to the mth power modulo 2n − 1. The result of applying the size of REDUCE2
(from lemma 2.3.4) to the size of REDUCE1 (from lemma 2.3.3) which is again applied to itself
gives the size for one composite reduction. The result is (using k, k′, and m′ as defined above)

S(m,n) = 3kk′S(m′, k′) +O(k2(m′)
4
3 log k) +O(n(m′)

4
3 log n) +O(M(n)).

Using the bounds k ≤ 2n 12 (m′) 23 (see the proof of lemma 2.3.3) and m′ ≤ m 1
2 , in addition to

the new bound k′ ≤ 2k 12 (m′) 23 = 2 32n 14m′, gives a size of

S(m,n) = 3kk′S(m′, k′) +O(nm
4
3 log n) +O(nm

2
3 log n) +O(M(n)).
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Using the result of Schönhage and Strassen that M(n) = O(n log n log log n), this can be sim-
plified greatly to

S(m,n) = 3kk′S(m′, k′) +O(nm
4
3 log n log log n).

Removing the big-O notation, the above size bound can be expressed (for some constant c) as

S(m,n) ≤ 3kk′S(m′, k′) + cnm 4
3 log n log log n.

Notice that this size only applies if a complete composite reduction is performed (i.e., m′ ≥
16 or m ≥ 256). For m < 256, only a constant number of multiplications are required, so
S(m,n) = O(M(n)).
The claim is that S(m,n) ≤ c′nm4 log n log log n for some c′, and is proved by induction on

m. For m < 256 and the appropriate c′ and c′′,

S(m,n) ≤ c′′M(n) ≤ c′nm4 log n log log n,
so this serves as a basis for the induction. Now assume m ≥ 256, and the induction hypothesis
states that

S(m′, k′) ≤ c′k′(m′)4 log k′ log log k′

for m′ < m. Using the bound k′ ≤ 2 32n 14m 1
2 and noticing that 2

3
2m

1
2 ≤ m 11

16 for m ≥ 256, k′
can now be bounded as k′ ≤ n 14m 11

16 ≤ n 1932 . This means that log k′ ≤ 19
32 log n, so using all the

upper bounds,

3(kk′)S(m′, k′) ≤ 3
(
2
5
2n

3
4m

5
6

)(
c′2

3
2n

1
4m

1
2m2
19

32
log n log log n

)

=
57

2
c′nm

10
3 log n log log n,

so

S(m,n) ≤ 57
2
c′nm

10
3 log n log log n+ cnm

4
3 log n log log n

≤
(
57

2
c′m−

2
3 + cm−

8
3

)
nm4 log n log log n.

Since m ≥ 256, this can be loosely upper bounded by

S(m,n) ≤
(
3

4
c′ + c

)
nm4 log n log log n,

and for c′ ≥ 4c this becomes
S(m,n) ≤ c′nm4 log n log log n,

proving the claimed size bound.
Turning to the depth, let D(m,n) represent the depth of raising an n-bit number to the

mth power modulo 2n − 1, and the depth of a composite reduction can be expressed as
D(m,n) = 2D(m′, k′) +O(log n)

for m ≥ 256 (i.e., m′ ≥ 16), and D(m,n) = O(log n) for m < 256. A depth bound of
D(m,n) ≤ c′(log n + logm log logm) can be proved by induction; the basis follows easily for
m < 256.
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For m ≥ 256, the induction hypothesis states that

D(m′, k′) ≤ c′(log k′ + logm′ log logm′).

Since m′ ≤ m 1
2 , we can bound logm′ log logm′ ≤ 1

2 logm(log logm− 1), so

D(m′, k′) ≤ c′(3
2
+
1

4
log n+

1

2
logm+

1

2
logm(log logm− 1)

= c′(
3

2
+
1

4
log n+

1

2
logm log logm).

In other words, for some constant c,

D(m,n) ≤ 2D(m′, k′) + c log n ≤
(
3c′

log n
+
c′

2
+ c

)
log n+ c′ logm log logm.

Since 3c′
log n ≤ 3c′

2 logm ≤ 3c′
16 for m ≥ 256,

D(m,n) ≤
(
11

16
c′ + c

)
log n+ c′ logm log logm.

For c′ ≥ 16
5 c, this can be simplified to

D(m,n) ≤ c′(log n+ logm log logm),
proving the claimed depth bound.
Returning to the original (exact) powering problem, the following easy corollary completes

the study of integer powering.

Corollary 2.3.6 If x is an n-bit integer and m is an integer satisfying m ≤ n, then xm can be
computed by a circuit of size O(nm5 log n log log n) and depth O(log n+ logm log logm).

Proof: Let N = nm. Since m ≤ n, multiplying both sides of the inequality by m shows
that m2 ≤ nm = N . By theorem 2.3.5, after padding x with zeros in the most signifi-
cant n(m − 1) places, xm (mod 2N − 1) can be computed in size O(Nm4 logN log logN) =
O(nm5 log n log log n) and depth O(logN + logm log logm) = O(log n+ logm log logm). Since
xm must be less than 2nm − 1, the modular computation actually gives the exact value of xm.

2.4 High Order Convergence with Newton Approximation

Given that repeated application of the Newton approximation formula given in section 2.2
computes powers in a depth-inefficient way, it is worthwhile to examine how efficient powering
methods can be incorporated to reduce the complexity of finding reciprocals.
Recall the approximation formula for finding real reciprocals given in equation (2.4). The

initial ideas here are presented in terms of real reciprocals, and then the simple changes to the
integer reciprocal problem are examined. Some algebraic manipulation shows that applying the
approximation formula twice, the approximation refinement becomes

yi+2 = yi(1 + (1− xyi) + (1− xyi)2 + (1− xyi)3).
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In fact, the original equation can be re-written as

yi+1 = yi(1 + (1− xyi)),

with the basic pattern emerging of

yi+m = yi

2m−1∑
j=0

(1− xyi)j . (2.11)

(Of course, we haven’t proven that this is the general form of repeated application of equa-
tion (2.4) — this is left to the interested reader. A proof that this equation, after scaling, gives
the correct answer will be given in theorem 2.4.1.)

A nice property of equation (2.11) is that the upper limit of the sum does not necessarily
have to be of the form 2m − 1 in order to work correctly. We wish to view an application
of equation (2.11) as a single approximation step, so the new approximation formula can be
written as

yi+1 = yi

k−1∑
j=0

(1− xyi)j . (2.12)

This equation is called the k-th order Newton approximation formula; the name comes from
the fact that convergence is of order k. Desirable convergence properties can be proven for
equation (2.12), but as we are interested in integer reciprocals, the scaled version should be
examined first. Performing fixed point scaling exactly as was done for the second order formula
of section 2.2 gives a fixed-point equation; however, as before, only a small number of bits of

yi need to be considered in the calculation of yi+1. If we let yi = RECIPROCAL(
⌊
x
2n−d

⌋
, d)

(i.e., the integer reciprocal of the d most significant bits of x), and x′ =
⌊
x

2n−dk
⌋
(the dk most

significant bits of x) then the resulting equation is

yi+1 =


yi

2k−1∑
j=0

2d(k+1)(2k−j−1)(2d(k+1) − x′yi)j

22dk2

 (2.13)

Notice that here the upper limit on the sum is 2k−1 instead of k−1 — the upper limit has been
raised to overcome the same type of problem that required the adjustment stage of RECIP1;
however, equation (2.13) is still referred to as the kth order Newton approximation formula.
To construct an algorithm using equation (2.13), the exact order of each approximation step

must be considered; this schedule of approximations depends on complexity considerations and
will be addressed in the next section. The following lemma shows how equation (2.13) affects
an approximation.

Lemma 2.4.1 If d ≥ 2 and yi = RECIPROCAL(
⌊
x
2n−d

⌋
, d), then applying equation (2.13) gives

yi+1 that satisfies

0 ≤ RECIPROCAL(
⌊
x

2n−dk

⌋
, dk) − yi+1 ≤ 2.

Furthermore, equation (2.13) can be evaluated by a logspace uniform circuit family with size
O(dk7 log dk log log dk) and depth O(log dk + log k log log k).
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Proof: This proof closely parallels the proof of theorem 2.2.1. Writing x′ in two parts as x′ =
x12

d(k−1)+x0, the assumption on yi states that yi = RECIPROCAL(x1, d), or that x1yi = 22d−s,
where 0 ≤ s < x1. This implies that x′yi = (x12d(k−1) + x0)yi = 2d(k+1) − (2d(k−1)s− x0yi). To
simplify notation, let w = 2d(k+1) and z = (2d(k−1)s− x0yi), so x′yi = w − z.
Let

d = yi

2k−1∑
j=0

2d(k+1)(2k−j−1)(2d(k+1) − x′yi)j = yi
2k−1∑
j=0

w2k−j−1zj .

The quantity of interest is x′yi+1, so first compute x′d as

x′d = (w − z)
2k−1∑
j=0

w2k−j−1zj =
2k−1∑
j=0

w2k−jzj −
2k−1∑
j=0

w2k−j−1zj+1 = w2k − z2k

= 22dk(k+1) − (2d(k−1)s− x0yi)2k.
Dividing by 22dk

2
gives

x′d
22dk2

= 22dk −
[
s

2d
− x0yi
2dk

]2k
.

Since s
2d
and x0yi

2dk
are both positive, we can bound

∣∣∣∣ s2d − x0yi2dk
∣∣∣∣ ≤ max

{
s

2d
,
x0yi
2dk

}
. (2.14)

The first of these terms is easy to bound: s
2d
< 1 since s < x1 < 2

d. To bound the second term,

notice that yi =
⌊
22d

x1

⌋
≤ 22d

x1
, so

x0yi
2dk
≤ x0

2d(k−2)x1
<

2d(k−1)

2d(k−2)2d−1
= 2.

Therefore, using equation (2.14),

(
s

2d
− x0yi
2dk

)2k
=

(∣∣∣∣ s2d − x0yi2dk
∣∣∣∣
)2k
< 22k. (2.15)

Since d ≥ 2, this can be further bounded as
22k ≤ 2dk < 2 · 2dk−1 ≤ 2x′.

Notice that since the power 2k on the left hand side of equation (2.15) is even, the error term
in equation (2.15) must be positive; in other words, x

′d
22dk2

≤ 22dk. It follows that 22dk − 2x′ <
x′d
22dk2

≤ 22dk.
The formula in equation (2.13) actually uses

⌊
d

22dk2

⌋
, so

x′yi+1 = x′
⌊
d

22dk2

⌋
> x′

(
d

22dk2
− 1

)
=
x′d
22dk2

− x′ > 22dk − 3x′

If RECIPROCAL(x′, dk)− yi+1 ≥ 3, then x′yi+1 ≤ 22dk − 3x′. As just shown, this is impossible,
so RECIPROCAL(x′, dk) − yi+1 ≤ 2.
To evaluate equation (2.13), a circuit has to compute the jth power of d(k+1) bit numbers,

for 0 ≤ j < 2k. Noticing that for each j the size of this powering is O(dkj5 log dk log log dk)
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from corollary 2.3.6, the total size required to take all the powers necessary is asymptotically
upper-bounded by

2k−1∑
j=0

cdkj5 log dk log log dk = cdk log dk log log dk
2k−1∑
j=0

j5

< cdk7 log dk log log dk.

As the reader can easily verify, the cost of adding these powers, multiplying by yi, and scaling
back down are all negligible compared the cost of powering, so the size of the circuit to evaluate
equation (2.13) is O(dk7 log dk log log dk).
All the powers are done in parallel, each having depth at most O(log dk + log k log log k),

and every other operation (the large sum and the re-scaling) in the evaluation of equation (2.13)
can be shown to have depth O(log dk); therefore, the total depth of evaluating equation (2.13)
is O(log dk + log k log log k).

2.5 An Efficient Parallel Reciprocal Circuit

The results of the previous section can be used to design a parallel algorithm for finding
reciprocals in depth O(log n log log n). In essence, lemma 2.4.1 says that an approximation
to the reciprocal that is accurate to d bits can be extended to an accuracy of dk bits in
O(dk7 log dk log log dk) size and O(log dk + log k log log k) depth.
To design a reciprocal algorithm, we need to come up with a sequence of approximation

accuracies d1, d2, d3, ... such that after doing i approximation refinements, the result is accurate
to di bits; eventually, all n bits should be known. In searching for criteria to design such a
sequence, a desirable feature of parallel algorithms is that the work is spread out evenly across
time. Looking at the form of the size bound from lemma 2.4.1, a good candidate is to set the
size of each stage to O(n log n log log n). Setting d1 = 2 (so two bit are known initially), the
schedule then works out as

dik
7
i log diki log log diki ≤ n log n log log n

=⇒ di
(
di+1
di

)7
log di+1 log log di+1 ≤ n log n log log n

=⇒ d7i+1 log di+1 log log di+1 ≤ nd6i log n log log n
Noticing that di+1 ≤ n at all times (otherwise, the whole answer would be known!), the above
inequality is satisfied with

di+1 = n
1
7d

6
7
i .

Solving this recurrence (with the initial condition d1 = 2) reveals that the sequence of accuracies
is

di = 2n
1−( 67)

i−1
.

Unfortunately, this schedule does not produce just integers for accuracies (in fact, not
necessarily even rational numbers!), so instead, let m = log n (recall that n is a power of 2 by
assumption) and define the function

f(i) =

⌊
m

(
1−

(
6

7

)i−1)⌋
. (2.16)
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Algorithm RECIP2(x, n);
m← log n;
d1 ← 2;
i← 2;
if (x ≥ 3 · 2n−2)
then begin
y1 ← 5;
end;

else begin
y1 ← 8;
end;

while i ≤
⌈
log logn
log 7

6

⌉
do begin

t←
⌊
m

(
1−

(
6
7

)i−1)⌋
;

di ← 2t;
ki ← di

di−1 ;

x′ ←
⌊
x

2n−di

⌋
;

yi+1 ←
⌊
yi
∑2ki−1
j=0 2

di−1(ki+1)(ki−j−1)(2di−1(ki+1) − x′yi)j
22di−1k

2
i

⌋
;

for j ← 1 downto 0 do
if (x′(yi+1 + 2j)) ≤ 22di
then begin
yi+1 ← yi+1 + 2j ;
end;

i← i+ 1;
end;
return (yi);

end.

Figure 2.5: Algorithm RECIP2

Then the schedule can be defined by

di = 2
f(i). (2.17)

The result is the algorithm shown in figure 2.5.

Lemma 2.5.1 Algorithm RECIP2 shown in figure 2.5 correctly computes the reciprocal of an
n-bit number, and can be realized with a circuit family of size O(n log n(log log n)2) and depth
O(log n log log n).

Proof: The fact that algorithm RECIP2 meets the schedule of equation (2.17) is a very simple
proof by induction. The basis of the induction is trivial — the integer reciprocals of the two
possible two-bit numbers are hard-wired into the algorithm. The induction step is proved by
lemma 2.4.1 (notice the adjustment step in figure 2.5 that takes up the slack in possible error
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from lemma 2.4.1). The final answer after p =

⌈
log logn
log 7

6

⌉
+ 1 steps is dp bits. Computing f(p)

(where f is defined in equation (2.16)) shows that f(p) = m; in other words, dp = 2
m = n.

For the complexity, the size of stage i is O(di−1k7i log di−1ki log log di−1ki) from lemma 2.4.1.
Examining ki, the order of approximation at stage i is ki = 2

f(i)−f(i−1). Focusing on the
exponent,

f(i)− f(i− 1) =
⌈
m

(
6

7

)i−2⌉
−
⌈
m

(
6

7

)i−1⌉
≤
⌈
m

(
6

7

)i−2⌉
− 6
7

⌈
m

(
6

7

)i−2⌉
+ 1

=
1

7

⌈
m

(
6

7

)i−2⌉
+ 1.

This means that

di−1k7i ≤ 2
m−
⌈
m( 67)

i−2
⌉
+

⌈
m( 67)

i−2
⌉
+7
= O(n).

Furthermore, since di−1ki < n, the total size of stage i (regardless of i) is O(n log n log log n).
Over all O(log log n) stages, the total size of the circuit becomes O(n log n(log log n)2).

The depth of stage i is O(log di−1ki + log ki log log ki) from lemma 2.4.1. Examining each
term separately, the first term is O(log n) for all i, giving a total depth of O(log n log log n) over
all stages. In the second term, log log ki can be bounded by log log n to obtain a depth over all
stages of

p∑
i=2

log ki log log ki ≤ log log n
p∑
i=2

log ki = log log n
p∑
i=2

[f(i)− f(i− 1)]

= log log n[f(p)− f(1)] = O(log n log log n).
Combining both terms, the total depth can be seen to be O(log n log log n).

The algorithm RECIP2 just described is certainly an efficient reciprocal algorithm (in terms
of both size and depth), but it does not clearly specify a relationship between the complexity
of multiplication and that of division. (The similarity of the size bound with the size of the
Schönhage-Strassen multiplication algorithm is mere coincidence.) In this sense, algorithm
RECIP1 was better, since the size was closely tied to the size of multiplication (in fact, the size
was O(M(n))). Can the good qualities of both algorithms (the size bound of RECIP1 and the
small depth of RECIP2) be combined? Fortunately, the answer to this question is yes.
The new algorithm is RECIP3 shown in figure 2.6; the value N is the number of bits of

the original problem (before any reductions). The basic idea behind algorithm RECIP3 is to
use RECIP2 to find a sufficiently accurate initial estimate of the integer reciprocal so that only
O(log log n) stages of second order approximations are needed.

Theorem 2.5.2 Algorithm RECIP3 in figure 2.6 correctly computes the reciprocal of an n-bit
number, and can be realized with a circuit family of size O(M(n)) and depth O(log n log log n).

Proof: Algorithm RECIP3 is a hybrid of RECIP1 and RECIP2, and the correctness follows directly
from the correctness of those algorithms (see theorem 2.2.1 and lemma 2.5.1).
After i steps of recursion in RECIP3, n = N

2i
, so it only takes log(log2N) = O(log logN)

steps of second order reduction before n ≤ N
log2N

. The complexity analysis of the second order

stages is identical to theorem 2.2.1, but with only O(log logN) stages. In other words, the size
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Algorithm RECIP3(x, n);

if n ≤ N
log2N

then begin
y ← RECIP2(x, n); {N is the size of the original problem.}
end;

else begin

t← RECIP3(
⌊
x
2n/2

⌋
, n2 );

y ←
⌊
2
3
2
n+1t−xt2
2n

⌋
;

for i← 3 downto 0 do
if (x(y + 2i) ≤ 22n)
then begin
y ← y + 2i;
end;

end;
return (y);

end.

Figure 2.6: Algorithm RECIP3

of the second order approximations (not counting the call on RECIP2) is O(M(N)) and the
depth is O(logN log logN).
The size of the call on RECIP2 is easily computed from lemma 2.5.1 to be

O(
N

log2N
log

N

log2N
log log

N

log2N
) = O(N),

and the depth is O(logN log logN).
Combining the complexity of the second order stages with the complexity of the call on

RECIP2, the final result is that RECIP3 has size O(M(N)) and depth O(logN log logN).

2.6 Chapter Summary

This chapter examined the most complex of the basic arithmetic problems — division. While
it can be shown that division is at least as hard as the other arithmetic problems (addition,
subtraction, and multiplication), it is unknown whether division is strictly harder than the
other operations. In comparison with multiplication (the second hardest problem), the results
of theorem 2.5.2 show that while it is still be possible that division is harder than multiplication,
the difference is not all that great (in terms of asymptotic growth).
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Chapter 3

Threshold Circuits

3.1 Introduction

The model of computation in the preceding chapter was the bounded fanin boolean circuit.
When we allow gates to have an arbitrary number of inputs, we have the general class of
boolean circuits. Obviously, any boolean gate with n inputs can be simulated by a circuit of
bounded fanin boolean gates with O(n) size and O(log n) depth, so we know that AC0 ⊆ NC1
(the definitions of the classes AC0 and NC1 are in section 1.3.1 of the introduction).

Much of the important lower bounds obtained in the past decade have been with the model
of unbounded fanin boolean circuits, including several proofs that the parity function of n bits
(denoted PARITY n) cannot be computed by any boolean circuit family with polynomial size
and constant depth (i.e., PARITY n is not in AC0) [29, 68]. However, it is easy to see that
PARITY n can be computed with a bounded fanin circuit family with O(n) size and O(log n)
depth, so this lower bound separates the classes AC0 and NC1 (i.e., AC0 is a proper subset of
NC1).

In subsequent work, researchers have tried to increase the separation between AC0 and
NC1 by looking for complexity classes that lie between AC0 and NC1; possible candidates for
this class are ACC and TC0 (it is known that AC0 ⊂ ACC ⊆ TC0 ⊆ NC1). In this chapter,
we are concerned with the constant depth threshold circuit model (as defined in section 1.3.1),
which corresponds to the class TC0.

For simplicity of presentation, we often assume that we can use EXACTnk gates in threshold
circuits, which are defined by

EXACTnk (x1, ..., xn) =



1 if

n∑
i=1

xi = k

0 otherwise

The addition of these gates does not change the class of functions computable by constant-depth
threshold circuits, as

EXACTnk (x1, ..., xn) = Th
n
k(x1, ..., xn) AND Th

n
<k+1(x1, ..., xn)

(recall that ANDs and ORs are just special cases of threshold gates, so can be easily computed).
Using EXACTnk gates, it is easy to see that PARITY ∈ TC0:

PARITY n = EXACTn1 OR EXACT
n
3 OR...OR EXACT

n
2dn/2e−1

33
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(2dn/2e− 1 is the greatest odd integer ≤ n). This fact (in addition to the lower bound showing
PARITY 6∈ AC0 and the observation that AC0 ⊆ TC0) shows that AC0 ⊂ TC0 (meaning
that AC0 is a proper subset of TC0).

In this chapter, we show that in fact, the threshold circuit is a very powerful model of
computation. In the following section, we describe threshold circuit families with small size
and constant depth for the following functions: iterated sum, discrete Fourier transform, integer
multiplication, Chinese Remaindering, iterated product, integer powering, and integer division.
For the last three of these (iterated product, integer powering, and integer division) we allow
the circuits to be P -uniform — the others satisfy the stronger constraint of logspace uniformity.

3.2 Computing Arithmetic Using Threshold Circuits

All of the circuits presented in this section (with the exception of the integer powering circuit)
have small size. By “small” we mean that for any constant ε > 0, the circuit families have size
O(n1+ε) for inputs of size n. This fact is not entirely evident from the lemma statements in
this section, and confusion may arise from the fact that n does not always represent the total
input length. The notation used is from commonly accepted conventions in the literature. For
instance, in lemma 3.2.1, we describe a circuit for adding m numbers, each of n bits. In other
words, the input length is actually nm bits, and the size complexity is therefore O((nm)1+ε).1

The circuit families described in the next subsection are all logspace uniform. The proof
of uniformity is not included here — it is a straight-forward matter to show that these circuit
families can be computed in O(log n) space.

3.2.1 Logspace Uniform Circuits

The problem of finding the sum of a set of integers is called the iterated sum problem. Pip-
penger has given a constant depth threshold circuit for multiplication, and the method used is
the straight-forward reduction to iterated sum (i.e., the “grade-school method” of multiplica-
tion) [46]. Looking at just the iterated sum circuit, we see that Pippenger’s circuit for adding
m values, each of n bits, has size O(nm2) and depth O(1). In the following lemma, we show
how to produce a constant depth circuit for iterated sum with a smaller size.
Note: All of the following algorithms use a parallel version of divide-and-conquer. The most

commonly used method of divide-and-conquer is to divide a size n problem into 2 problems of
size n/2, resulting in a computation tree of depth Ω(log n). In our circuits, we divide a size
n problem into nε problems, each of size n1−ε; therefore, the resulting computation tree has
depth O(1ε ).

Lemma 3.2.1 Given any constant ε satisfying 0 < ε ≤ 1, there exists a circuit for computing the
iterated sum of m numbers, each of n bits (with m ≤ nO(1)), that has size O(nm1+ε) and depth
O(1ε ).

Proof: Since m ≤ nO(1), it is trivial to show that the result of the iterated sum will have less
than cn bits for some constant c.
To calculate the iterated sum, we build a computation tree where each node has bmεc

children, and there are a total ofm leaves. Placing them input values at the leaves, computation
proceeds toward the root of the tree with each internal node computing the sum of its children.

1The size is actually slightly better than this — but remember that the big-oh notation gives an upper bound.
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After all computations, the root contains the sum of all m input values. It is easy to see that
the desired tree has O(m1−ε) internal nodes, and a height of O(1ε ). We use Pippenger’s circuit
at each internal node for a node size of O(nm2ε), so the total circuit size is O(nm1+ε). Since
the depth of each node in the tree is constant, the total depth of the circuit is the same as the
height of the tree, or O(1ε ).
Using this result, we can also construct small size circuits for discrete Fourier transform.

Let DFTM denote the discrete Fourier transform of an M -vector.

Lemma 3.2.2 Given any constant ε satisfying 0 < ε ≤ 1, we can construct a circuit that computes
DFTM (a0, a1, ..., aM−1) mod 2N + 1 (where M and N are both powers of 2 and M ≤ N) that
has size O(1εMN

1+ε) and depth O( 1
ε2
).

Proof: Since N and M are powers of 2, let N = 2n and M = 2m. We will first show DFTM
exists in the ring Z2N+1. If we let ω = 2

2N/M , then by taking ωM/2 = 2N ≡ −1 (mod 2N +1)
it is easy to see that ω is a principleMth root of unity in Z2N+1. Also, since M is a power of 2,
we know that M and 2N + 1 are relatively prime; therefore, M−1 exists in the ring. By these
facts, the ring Z2N+1 supports DFTs on M -vectors.

We introduce a new constant δ =
√
1+4ε−1
2 . We will construct a computation tree as we did

in lemma 3.2.1, but the fanout in this case will be f = 2bmδc. Let v0, v1, ..., vf−1 be the children
of the root, and assume each child computes the Mf -vector val(vi) = (xi,0, xi,1, ..., xi,M

f
−1) =

DFTM
f
(ai, af+i, ..., aM−f+i). Note that these vectors exist since ωf is a principle Mf th root of

unity, and
(
M
f

)−1
exists in Z2N+1. From these vectors we can produce the final result vector

(y0, y1, ..., yM−1) = DFTM (a0, a1, ..., aM−1) by calculating

yi =
f−1∑
j=0

ωjxj,i mod 2
N + 1. (3.1)

The proof of correctness for equation (3.1) is straight-forward, and is not included in this
dissertation. Equation (3.1) is a simple modular iterated sum, since multiplication by powers
of ω is just a bit shift (which costs nothing in the circuit model). This problem sub-division
process is repeated down the tree until there are less than f values in each node. In general,
if we label the root as level 0, we are calculating DFTM/f i at each node of level i from its

f children. By using the iterated sum circuit of lemma 3.2.1 (the reduction mod 2N + 1 can
be done after a non-modular iterated sum with a single subtraction), we can do this in size
O(M
f i
Nf1+δ) for each node on level i. Since there are f i nodes on level i, the total size for

all nodes of that level is O(MNf1+δ). There are O(1δ ) levels, so the total size of the circuit is

O(1δMNf
1+δ). Since f is O(N δ), the size can be written as O(1δMN

1+δ+δ2) = O(1εMN
1+ε).

The depth of each level is O(1δ ), so the total depth is O(
1
δ2
) = O( 1

ε2
).

Using this circuit for discrete Fourier transform we can construct a constant depth multi-
plication circuit.

Lemma 3.2.3 Given any constant ε satisfying 0 < ε ≤ 1, we can construct a circuit for multipli-
cation of two N bit numbers that has size O(1εN

1+ε) and depth O( 1
ε3
).

Proof: The circuits that we construct are actually for multiplying two N -bit numbers modulo
2N +1, where N is a power of 2. For exact (non-modular) multiplication of N ′ bit numbers, we
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use the same circuit with N = 2dlogN ′e+1. It is easy to show that this will produce the exact
answer, and the size is only a constant factor larger than the modular circuit for N ′ bits.
We will denote the two input numbers by a and b, and their product by c. Since N is a

power of 2, let N = 2n, where n is an integer. Letting m = 2bεnc, we can write any N -bit
number a as an m-vector of blocks of s = N

m bits, a = (a0, a1, ..., am−1); a0 is the block of least
significant bits. We can view this vector as a vector of polynomial coefficients, and define the

polynomial A(x) =
m−1∑
i=0

aix
i. Notice that A(2s) = a. Defining a polynomial for b in a similar

way, the product polynomial C(x) = A(x)B(x) will be such that C(2s) = c.2

We use discrete Fourier transforms for the polynomial multiplication, and since the product
polynomial will have degree 2m− 2, we must calculate the transform of 2m-vectors. (We could
actually use wrapped convolutions on m-vectors, but nothing is gained over our asymptotic
bounds.) Looking at the straight-forward method of polynomial multiplication, it is easy to
bound max

0≤i<2m{ci} < m2
2s < m(22s + 1). Since m and 22s + 1 must be relatively prime, we can

calculate the coefficients of C(x) modulo both m and 22s + 1, and combine these results for
the final answer modulo m(22s + 1). This ring includes as a subset the range of all possible
results, so the result of these modular calculations is also the exact (non-modular) answer. The
calculations modulo m can be done using lemma 3.2.1 (with a new constant ε3) and “grade-
school multiplication”, with a total size of O(N1+ε). We will now concentrate on the cost of
the calculations modulo 22s + 1.

We will again use a divide and conquer tree with the root labeled as level 0. The fanout
of the tree is 2m, and it should be obvious that on level i we are computing products of

si = N
(
2
m

)i
bit numbers. The DFT2m mod (2

2si+1 + 1) required at this level can be done in

size O(1ε2m(2si+1)
1+ε) by lemma 3.2.2. On level i, there are (2m)i such DFTs to calculate, for

a total size of O(1ε4
i+1

(
2
m

)(i+1)ε
(2N)1+ε). For sufficiently large N (and therefore m) we have(

m
2

)ε
> 8, so the size of level i can be simplified to O(1ε

(
1
2

)i
N1+ε). Summing over all levels we

have a total size of O(1εN
1+ε).

The depth of each level in the tree is O( 1
ε2
) by lemma 3.2.2, so the total depth of our

multiplication circuit is O( 1
ε3
).

The problem of Chinese Remaindering is defined as follows: given m primes p1, p2, ..., pm
(actually, they only have to be pairwise relatively prime) and an n bit number a, calculate the
residue of a mod pi for all 1 ≤ i ≤ m. Conversely, given the residues modulo each of the primes
r1, r2, ..., rm, we would like to calculate the least positive a such that a ≡ ri (mod pi) for all
1 ≤ i ≤ m. We will only be interested in the case where m ≥ n, and this fact simplifies the
analysis.

Lemma 3.2.4 Given any constant ε satisfying 0 < ε ≤ 1, we can construct a circuit for Chinese
Remaindering (in both directions) with size O( 1

ε2
m1+ε) and depth O( 1

ε4
).

Proof: When the multiplication circuit of lemma 3.2.3 is used in the Chinese Remaindering
circuit of Hastad and Leighton (who designed the circuit for the bounded fanin boolean circuit
model) [32], the result is exactly as stated in the lemma. The proof of the size and depth of
the circuit is also analogous to that found in [32], and is not included here.

2This is the same method that was used for integer powering in section 2.3.1.
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3.2.2 P -uniform Circuits

In this section, we relax our restrictions on the uniformity of the circuit families; namely, we
allow the circuit families to be P -uniform rather than logspace uniform. The following circuits
all use tables of prime numbers, and we don’t know how to compute these tables in O(log n)
space.
The next problem we will look at is that of iterated product over a finite field. An iterated

product of m values a1, a2, ..., am over the field Zp is defined to be
m∏
i=1

ai mod p.

Lemma 3.2.5 Given any constant ε satisfying 0 < ε ≤ 1, we can construct a circuit for iterated
product of m numbers over the field Zp with size O(

1
ε2
(m log p)1+ε) and depth O( 1

ε5
).

Proof: Define a new constant δ = ε
5 . We will perform the iterated product in a tree similar

to the tree used for iterated sum. The tree will have fanout mδ, and will perform an iterated
product of mδ values in Zp at each node. The iterated product at each node is computed by
performing a Chinese Remainder step, followed by calculating the iterated product over each
of the smaller fields (using discrete logs, iterated sum, and powering), and finally a Chinese
Remainering step to recover the full result. This produces the exact iterated product, and by
multiplying by an mδ log p bit approximation to 1/p, we can find the residue modulo p.
Let p1, p2, ..., ps be the prime moduli (in increasing order) used in the Chinese Remainder

step. To insure that there is no loss of information, we must be sure that the product of the mod-

uli is greater than the maximum possible result. Specifically, we must insure that
s∏
i=1

pi > p
mδ .

By basic number theoretic results, we can achieve this with s ≤ ps = Θ(mδ log p) [31]. Obvi-
ously, s > log p, so the condition of lemma 3.2.4 is satisfied, and we may construct the required
Chinese Remaindering circuit with size O( 1

δ2
m2δ(log p)1+δ) and depth O( 1

δ4
).

After performing the initial Chinese Remaindering step, we must perform an iterated prod-
uct over each of the pi. Since for all prime pi, Zpi under multiplication is a cyclic group, there is
a generator (not necessarily unique), call it gi, that generates the entire group. Let fi(x) = g

x
i ;

due to the fact that gi is a generator, this function is one-to-one and onto for all x ∈ Z∗pi . We
make tables for fi(x) and f

−1
i (x), each of size O(pi log pi). Within a particular field, there must

be tables for all mδ input values, so the total size taken up by tables for pi is O(m
δpi log pi).

The iterated product is calculated by taking the discrete logarithm of all input values
(f−1i (x)), performing the iterated sum of these values modulo pi− 1, then raising the generator
to the resulting power in Zpi (this is just fi(x), above). This is a fairly common method
of performing iterated product (see, for example, [7]). The only part we haven’t examined
here is the iterated sum. By lemma 3.2.1, we can calculate the exact iterated sum of mδ

numbers, each of log pi bits, in size O(m
δ+δ2 log pi) and depth O(

1
δ ). With an m

δ log pi bit
approximation to (1/(pi − 1)), we can reduce this exact result to the result modulo pi − 1 with
a single multiplication. By lemma 3.2.3, this takes size O(1δm

δ+δ2(log pi)
1+δ) and depth O( 1

δ3
).

Therefore the total complexity of calculating the iterated product of mδ numbers modulo pi is
O( 1
δ2
m2δpi(log pi)

1+δ) size and O( 1
δ4
) depth.

Since this must be done for all s prime fields, the total size complexity of iterated product of
mδ numbers is s times the above value, plus the cost of Chinese Remaindering. Using the upper
bounds for s and pi, the total size is O(

1
δm
5δ(log p)1+2δ), and the total depth is O( 1

δ4
). With

an mδ log p bit approximation to (1/p), we can reduce this result (the exact iterated product)
modulo p. The complexity of this multiplication is negligible compared to the rest of the circuit.
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All the above results are for one node of the tree. Summing over all nodes and rewriting in
terms of ε, we get a total size of O( 1

δ2
m1+5δ(log p)1+2δ) = O( 1

ε2
(m log p)1+ε), and a total depth

of O( 1
ε5
).

The preceding lemma is used in relating threshold circuits to finite field circuits (section 3.3).
The following lemma addresses the problem of integer powering — as in the preceding chapter,
this is an important part of integer division.

Lemma 3.2.6 Given any constant ε satisfying 0 < ε ≤ 1, we can construct a threshold circuit
family that computes the mth power of an n-bit number (where m ≤ n) with O( 1

ε2
n1+εm2+ε) size

and O( 1
ε5
) depth.

Proof: Let x represent the n-bit input; the desired output of the circuit is xm. Notice that since
x < 2n, we can bound the output by xm < 2nm. We use a sequence of primes p1 < p2 < · · · < ps
as in the preceding proof, and we want to guarantee that

∏s
i=1 pi > 2

nm. This is accomplished
with s < ps = Θ(nm) [31], and by lemma 3.2.4 we can compute xmod pi for all s primes in
O( 1
ε2
(nm)1+ε) size and O( 1

ε4
) depth.

After the Chinese Remaindering is performed, we want to compute xmmod pi for each of
the s primes. By lemma 3.2.5, this can be done for prime pi in O(

1
ε2
(m log pi)

1+ε) size and
O( 1
ε5
) depth. Since log pi = O(log n) for all pi, the total size for computing x

mmod pi for all s
primes is

O(
1

ε2
n(log n)1+εm2+ε) = O(

1

ε2
n1+εm2+ε).

Now simply using another Chinese Remainder circuit gives the completed powering circuit.
Clearly, both the size and depth are dominated by the middle section of the circuit (i.e., com-
puting xmmod pi for p1, p2, ..., ps). This gives the complexity bounds stated in the lemma.

We are now ready to describe a small-size threshold circuit family that computes integer
reciprocals. Of course, the circuit family is only P -uniform, since it relies on the P -uniform
circuit for powering.

Theorem 3.2.7 Given any ε satisfying 0 < ε ≤ 1, we can construct a threshold circuit family that
computes the integer reciprocal of n-bit numbers with O( 1

ε3
n1+ε) size and O( 1

ε5
) depth.

Proof: The circuit described in this proof manipulates fixed-point binary approximations to
real numbers. The first step of the circuit is to shift the input so that it represents a fixed-point
number in the range [12 , 1). This is essentially the same circuit that was used in chapter 2 to
shift the input so that the most significant bit is set; using unbounded fanin gates, this circuit
has O(n) size and O(1) depth.
Let x represent this shifted number, and let u = 1 − x (so 0 < u ≤ 1

2). We also define a
new constant δ =

√
4 + ε−2. We use the reciprocal equation from Melhorn and Preparata [40];

namely, we use the fact that the following formula gives an n-bit approximation to the reciprocal
of x (with r = dnδe and k = d1δ e):

(1 + u+ u2 + · · · + ur−1)(1 + ur + u2r + · · ·+ u(r−1)r) · · ·
· · · (1 + urk−1 + u2rk−1 + · · · + u(r−1)rk−1). (3.2)

We compute each factor in sequence. Specifically, first compute the set {u, u2, u3, ..., ur} from
u. Then from ur, we can compute {ur, u2r, u3r, ..., ur2}. In general, we use uri to compute
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{uri , u2ri , ..., uri+1}. There are a total of k such stages, so if we let S(i, r) and D(i, r) denote
the size and depth of the ith stage, then the total size of computing all powers of u required in
equation (3.2) is

k∑
i=1

S(i, r),

and the total depth is
k∑
i=1

D(i, r).

In [40] it was shown that for the reciprocal problem, we can use an n+log(12k) bit approxi-
mation to each ur

i
in the above computations, and the result will still be an n-bit approximation

to 1/x. In other words, we only need to take r powers of n+ log(12k) = O(n) bit numbers at
each stage. By lemma 3.2.6 we can now bound

S(i, r) = O(
1

δ2
n1+δr3+δ) = O(

1

δ2
n1+4δ+δ

2
),

so the total size of computing all powers of u needed in equation (3.2) is O( 1
δ3
n1+4δ+δ

2
); in

addition, it is easy to see that the total depth is O( 1
δ5
).

Computing each factor of equation (3.2) is now a simple iterated sum. By lemma 3.2.1 this
can be done for all factors with a total size of O(knr1+δ) = O(1δn

1+δ+δ2), and a total depth of
O(1δ ). Clearly, the complexity of this stage is insignificant when compared to the complexity of
the first stage (above).
Finally, we need to multiply all k factors together. Even if we do all k multiplications

sequentially3, the total size (see lemma 3.2.3) is O( 1
δ2
n1+δ), and the total depth is O( 1

δ4
).

Once again this complexity is dominated by the first stage. Notice how, as in chapter 2, the
complexity of division is most strongly affected by the complexity of powering.
Using the definition of δ, we see that the total size of our integer reciprocal circuit is

O(
1

δ3
n1+4δ+δ

2
) = O(

1

ε3
n1+ε),

and the total depth is

O(
1

δ5
) = O(

1

ε5
).

3.3 Relation to Finite Field Circuits

In this section we relate the power of threshold circuits to the class of arithmetic circuits over a
finite field. Finite field circuits differ from the previous models used in this dissertation in one
major way — this is the first model that does not use the boolean value domain. In fact, the
value domain changes depending on the size of the input to the circuit. Let p(n) be a function
that maps input lengths to prime numbers — the value domain for the circuit with input size
n is the field Zp(n). The function basis (i.e., the gates of the circuit) is the set of iterated sum
and iterated product functions over Zp(n).
We relate the power of these finite field circuits to the power of threshold circuits by giving

simulations of finite field circuits with threshold circuits, and vice-versa. These simulations are
important because they give some algebraic structure to the class of functions computable by

3A more elegant solution would be to use a depth log k tree of multiplications.
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threshold circuits — this could be an important first step to proving lower bounds for threshold
circuits.
To simplify the statement of our results, we introduce some new notation. In particular,

we use Threshold(S(n),D(n)) to refer to the class of functions computable by threshold circuits
with size O(S(n)) and depth O(D(n)). Similarly, let FiniteField(p(n), S(n),D(n)) be the class
of functions computable by finite field circuits with size O(S(n)) and depth O(D(n)), where
p(n) is the function mapping input lengths to prime moduli.

3.3.1 Simulating Finite Field Circuits

The results of this section have been essentially proved in section 3.2. The simulation is summed
up in the following theorem. Note that the size of the binary input to the simulating threshold
circuit is n log p(n), so there is very little size increase in the simulation.

Theorem 3.3.1 For any constant ε satisfying 0 < ε ≤ 1,
FiniteField(p(n), S(n),D(n)) ⊆ Threshold((S(n) log p(n))1+ε,D(n)).

Proof: This theorem is essentially proved in lemmas 3.2.1 and 3.2.5. In this simulation, we
use binary representations, each with O(log p(n)) bits, to represent elements of Zp(n). When
constructing a threshold circuit that simulates an n input finite field circuit (with modulus
function p(n) and size S(n)), we first compute a log S(n)+log p(n) bit approximation to 1/p(n).
This value is hard-wired into the threshold circuit for easy access by different parts of the
threshold circuit.
Now consider a single gate of the finite field circuit, where the fanin of the gate is f . If the

gate is an iterated sum gate, then we first perform an exact addition (as in lemma 3.2.1) with a
threshold circuit of size O(f1+ε log p(n)) and depth O(1ε ). This exact sum is at most fp(n), so
with a log fp(n) bit approximation to 1/p(n), we can perform the reduction modulo p(n). This
approximation is available from the pre-computed value of 1/p(n), described above (note that
log S(n) + log p(n) ≥ log fp(n)). The reduction requires two multiplications and an addition,
with a total size of O(1ε (log fp(n))

1+ε) and a total depth of O( 1
ε3
) (see lemma 3.2.3). If the gate is

an iterated product gate, then by lemma 3.2.5 we can simulate it with a threshold circuit of size
O( 1
ε2
(f log p(n))1+ε) and depth O( 1

ε5
). In either case (iterated sum or product), we can simulate

any fanin f gate of the finite field circuit by a threshold circuit of size O( 1
ε2
(f log p(n))1+ε) and

depth O( 1
ε5
).

Now consider the entire finite field circuit, and let fi denote the fanin of gate i. The size of
the finite field circuit can be written as

S(n) =
∑
i

fi.

Therefore, the size of the complete threshold circuit that simulates each gate of the finite field
circuit is at most (for some constant c)

∑
i

(c
1

ε2
(fi log p(n))

1+ε) = c
1

ε2
(log p(n))1+ε

∑
i

f1+εi ≤ c 1
ε2
(log p(n))1+εS(n)1+ε.

Ignoring the 1
ε2
factor (since it is a constant), the size of the resulting threshold circuit is

O((S(n) log p(n))1+ε). Furthermore, it is easy to see that the total depth is O( 1
ε5
D(n)) =

O(D(n)).
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3.3.2 Simulating Threshold Circuits

In this section, we examine the reverse simulation: given a threshold circuit, how can we
simulate the function using a finite field circuit? The simulation uses interpolating polynomials
over Zp(n), as described in the following theorem.

Theorem 3.3.2 For any function p(n) that maps only to prime numbers and satisfies S(n) ≤ p(n)
for all n,

Threshold(S(n),D(n)) ⊆ FiniteField(p(n), S(n) log S(n),D(n)).

Proof: We use the following property of the field Zp(n):

Given any ordered list of k + 1 values v0, v1, ..., vk, there exists a degree k interpo-
lating polynomial g(x) over Zp(n) such that g(i) ≡ vi (mod p(n)) for i = 0, 1, ..., k.

For such a polynomial, let g(x) =
∑k
i=0 cix

i. Notice that with a finite field circuit, we can
compute (for input x) the values x2

i
for i = 0, 1, ..., blog kc with a circuit of size O(k) and

depth 1. Furthermore, using these values we can construct a circuit that computes xi for all
i = 0, 1, ..., k which has size O(k log k) and depth 1 (we simply multiply together the appropriate
powers x2

i
). Now it is a simple matter to evaluate the polynomial g(x) — the total size of the

circuit is O(k log k), and the total depth is 3.

Now consider a single threshold gate of the threshold circuit we are simulating (assume it

is a Thfk(x1, ..., xf ) gate). We use the identity element of Zp(n) under addition (1) to represent
boolean 1, and the identity element under multiplication (0) to represent boolean 0.4 Since
p(n) ≥ S(n) (by a condition of the theorem), it is also true that p(n) ≥ f . In other words,∑f
i=1 xi has an unambiguous representation in Zp(n). To simulate the threshold gate, we first
compute the sum of the inputs, and then evaluate the interpolating polynomial for the threshold
function. This takes total size O(f log f) and depth O(1).

Doing this for every threshold gate in the circuit gives the results stated in the theorem —
a finite field circuit with O(S(n) log S(n)) size and O(D(n)) depth.

3.3.3 Combined Results

In this section, we combine the results of the two preceding sections to show an equivalence
between threshold circuits and finite field circuits. First, we define a more general class of
functions computable with finite field circuits by removing the dependence on a specific function
p(n).

Definition 3.3.3 The class of functions FiniteField(S(n),D(n)) (notice that p(n) is not specified)
is defined as

FiniteField(S(n),D(n)) =
⋃

Valid p(n)
with p(n) ≤ 2S(n)

FiniteField(p(n), S(n),D(n)).

By “valid p(n)” we mean any function p(n) whose range is contained in the set of prime numbers.

4Actually, any two elements of Zp(n) can be used to represent the boolean values. The proof above directly
applies by first shifting the representatives to 0 or 1.
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This definition simply means that for a function f(x) to be a member of the complexity
class FiniteField(S(n),D(n)), there must be some relatively small modulus function p(n) such
that f(x) ∈ FiniteField(p(n), S(n),D(n)). Now we can relate the power of threshold circuits
and finite field circuits.

Theorem 3.3.4 For any size function S(n) and depth function D(n),⋃
k≥1
Threshold(S(n)k,D(n)) =

⋃
k≥1
FiniteField(S(n)k,D(n)).

Proof: By elementary number theory, for every n there exists a prime number p(n) such that
S(n) ≤ p(n) ≤ 2S(n). This defines the modulus function for theorem 3.3.2 which, combined
with theorem 3.3.1, proves the theorem.
The most important consequence of this theorem is the following characterization of TC0.

Corollary 3.3.5

TC0 =
⋃
k≥1
FiniteField(nk, 1)

In other words, the class of all functions computable by polynomial-size constant-depth
threshold circuits is exactly the same as the class of functions computable by polynomial-
size constant-depth finite field circuits. This shows that the class TC0 has a surprisingly
strong algebraic characterization, which might be useful in proving a separation (or equivalence)
between TC0 and NC1.
It should be noted that NC1 also has an algebraic description, where the power of NC1

is characterized by the problem of iterated product over the alternating group A5 [6]. Thus,
comparing the powers of TC0 and NC1 might be possible by looking at only these algebraic
characterizations. The exact relationship between TC0 and NC1 remains an open problem at
the time of this dissertation.

3.4 Chapter Summary

In this chapter, we have shown that the threshold circuit is a very powerful model of compu-
tation, with many arithmetic functions computable in constant-depth and sub-quadratic size
(lemmas 3.2.1 through 3.2.6). In fact, integer division is a problem which seems quite diffi-
cult for bounded fanin boolean circuits, but has a P -uniform threshold circuit family with size
O(n1+ε) and constant depth (theorem 3.2.7).
It was also shown that the power of threshold circuits has a concise algebraic description.

For instance, TC0 is exactly the class of functions computable by constant-depth polynomial-
size finite field circuits (corollary 3.3.5). This permits us to use the great wealth of knowledge
about finite fields when reasoning about threshold circuits. However, it remains an important
open question as to whether or not TC0 is a proper subset of NC1.



Chapter 4

Motion Planning in Cooperative
Environments

4.1 Introduction

In this chapter, we begin presenting results for algorithmic motion planning problems. As stated
in the introduction, the basic foundation for motion planning comes from geometric problems,
such as finding a path for an object (robot) which avoids a set of obstacles (known as the “Piano
Movers’ Problem”) [61]. Even for the case of the robot being a simple point, finding the shortest
path through a set of objects can be very difficult in three dimensions, but a fully polynomial
approximation algorithm was given by Papadimitriou [43]. Unfortunately, these problems do
not take into account the physical limitations of a real robot (for instance, the shortest path
between two points will usually involve an instantaneous change in the direction of motion);
furthermore, it is much more important to consider a path that takes the shortest time rather
than covering the shortest distance. With this in mind, the problem of kinodynamic motion
planning addresses these real-world issues.

Kinodynamic planning extends kinematic planning (avoiding a set of static obstacles) by
including dynamics (or dynamical) constraints, such as dynamics laws (e.g. f = ma) and
dynamics bounds (a maximum allowable acceleration amax and velocity vmax). In addition to
simply finding a trajectory between a start state and a goal state (a state consists of both a
position and a velocity), it is desirable to find the optimal trajectory, i.e., the trajectory that
takes the least amount of time. Dynamics bounds are given by bounding the norm of the vectors
that represent velocity and acceleration. As finding optimal trajectories is computationally
intensive, practical algorithms must focus on approximately optimal trajectories; specifically, an
approximation algorithm will find a trajectory connecting the start state and goal state that
requires time only slightly greater than the time required by the optimal trajectory. Previously,
an approximation algorithm was known when the dynamics bounds are stated in terms of the
L∞ norm [12]; however, while such a case is easier to show (due to the independence of the
dimensions), it relies on somewhat artificially imposed properties, such as the orientation of the
coordinate axes.

In this chapter, we present an approximation algorithm that uses the L2 norm for dynamics
bounds; our results parallel those of Canny, Donald, Reif, and Xavier [12], but the proof
techniques are very different. In independent work concurrent with the research presented in
this chapter, Donald and Xavier have also developed an approximation algorithm with dynamics
bounds stated in terms of L2 norms [24].

43
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Optimal kinodynamic planning seems to be very hard in practical situations; the only exact
solutions to the optimal kinodynamic planning problem are for one or two dimensions. In fact,
in three dimensions (or more) finding a minimum distance path has been shown to be NP-
hard [14], and this proof can be used to show that finding the exact solution for kinodynamic
planning in ≥ 3 dimensions is NP-hard. However, as with many NP-hard problems, it is possible
to find an approximately optimal solution in polynomial time; as we show here, the goodness of
the approximation can be bounded by a proven scalar multiple. In other words, if the optimal
solution is a robot trajectory that takes time T , then for any given ε > 0 we can find a solution
that takes time at most (1 + ε)T by a search algorithm whose running time is polynomial both
in the complexity of the environment and in 1ε .

In real life there are additional problems to address (such as external forces) that we do not
address in this chapter. One additional real-world property that we do address is the inability
of real robots to navigate accurately at high speeds. To this end, we use the notion of “safe”
and “also-safe” trajectories introduced in [12]; basically, this concept uses an affine mapping
from speed (i.e., magnitude of velocity) to distance that bounds how close the robot may be to
an obstacle. Exact definitions of “safe” and “also-safe” trajectories can be found in section 4.5.
The robot model that we use is simply a point robot with unit mass; non-point robots can be
handled easily by “growing” the obstacles to reflect the shape of the robot. It should be noted
that the approximation algorithm we present is extremely simple; the complex equations found
in this chapter are used exclusively for proving the correctness of the algorithm.

4.2 Preliminaries

4.2.1 Definitions and Terminology

Before starting the technical material, we will present the definitions and terminology that are
used in this chapter and the next. All vector variables will be typeset in boldface, to separate
them from scalars which are typeset in standard math italics. For example, v is a vector (of
reals), and t is a scalar real. First and second derivatives are denoted by superscripted dots as
in standard control theory literature. For example, if p(t) is a (twice differentiable) function,
then ṗ(t) is its first derivative, and p̈(t) is its second derivative.

Consider a point traveling through d-dimensional Euclidean space. By a trajectory Γ, we
mean both the velocity and position of the path that the point takes. By a point on a trajectory,
we mean both the position and velocity at a particular time; for example, the endpoints can
be given by (p0,v0) and (p1,v1), where p0 and p1 are the starting and ending positions,
respectively, and v0 and v1 are the starting and ending velocities. If trajectory Γ takes time T ,
we say that Γ is a time T trajectory. For a subscripted trajectory Γr, we denote the position at
time t by pr(t), the velocity by ṗr(t), and the acceleration by p̈r(t). The change (from time 0)
in any of these functions is represented by a delta prefix; for example, the change in position is
∆pr(t) = pr(t)− pr(0). Similar definitions hold for ∆ṗr(t) and ∆p̈r(t). The environment is a
set of polyhedral obstacles in d-dimensional space, where d is considered to be a small constant.

The 2-norm of a vector v is written as ‖v‖2, and the infinity norm is ‖v‖∞. Hereafter, if
we write simply ‖v‖ without a subscript, the 2-norm should be understood.
The set of obstacles in the environment is represented by E . All obstacles are polyhedral

and require a total of n bits to encode. Furthermore, it is assumed that the space in which the
robot may move is bounded by a ball of diameter D.
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Figure 4.1: An example grid search problem

4.2.2 Outline of Algorithm and Proof

Consider the following discrete search problem: we are given a subgraph of a d-dimensional grid-
graph; in other words, a grid-graph with some vertices missing. There are two distinguished
vertices s and g, and we want to know if there is a path from s to g (an example in two
dimensions is shown if figure 4.1). This problem is easy to solve using depth-first search on
the graph; a minimum distance path from s to g can be found (if a path exists) by using
breadth-first search.

The problems we are interested in for this chapter are similar, but involve searching a
continuous space. By a discretization of the environment with grid-length g, we are referring to
a graph constructed from the environment as follows. First, construct a graph with nodes for
each point (i1g, i2g, ..., idg) in the environment, where each ij is an integer; since the environment
is bounded by a ball of diameter D, the graph is finite. Edges are added between neighboring
vertices to form a grid-graph. Finally, the vertices that lie inside any obstacle are removed from
the graph.

The graph of figure 4.1 is such a graph — the missing parts of the grid correspond to
obstacles. Simple reachability problems can be answered using this graph: by making g small
enough we can guarantee that there exists a continuous path in the environment if and only if
there exists a path on the constructed grid-graph, and a breadth-first search on the grid-graph
gives an approximately minimum distance path in the continuous environment. Unfortunately,
even this simple reachability problem requires a grid whose size grows exponentially with the
algebraic complexity of the environment. We use a variant of this strategy that requires only
a polynomial size graph (described fully in section 4.3) to solve approximate kinodynamic
planning.

The proof of the correctness of our algorithm is based on a tracking theorem (theorem 4.4.8).
This theorem states that for any continuous trajectory Γe, there exists a trajectory Γa that
travels only between grid-points of our discretization and is always close (in both position



46 CHAPTER 4. MOTION PLANNING IN COOPERATIVE ENVIRONMENTS

and velocity) to the continuous trajectory Γe. Thus, the minimum time continuous trajectory
has a corresponding approximating trajectory in the constructed grid, and this approximating
trajectory can be found by simple breadth-first search. Since any discovered trajectory between
grid-points is also a valid continuous trajectory, we never find an invalid trajectory, and the
correctness of the approximation algorithm follows.

The proof of the tracking theorem is rather involved, so we outline it here. First we show
that any continuous trajectory can be stretched in time so that it takes slightly longer, but the
new trajectory meets a smaller acceleration bound (lemma 4.4.3). Thus, when approximating
the slowed-down continuous trajectory, the additional acceleration available to the approxi-
mating trajectory can be used to reach a grid-point that is close to the continuous trajectory.
Unfortunately, there may still be some position error build-up while approximating the con-
tinuous trajectory, so we alternate phases of approximating with phases of error correction. A
slightly modified continuous trajectory that doesn’t change velocity during the error correction
phase is shown to exist (lemma 4.4.4), and this trajectory is used in the approximating phases
instead of the original one. By making the approximating and error correcting phases short
enough, we show that the constructed trajectory is still a good approximation of the original
continuous trajectory, which completes the proof of the tracking theorem.

4.3 Constructing a Grid

For our kinodynamic planning approximation, we build a grid of points in state space, rather
than just in the position as outlined above. The approximation proceeds in time steps of length
τ as follows: At all times iτ (i an integer), the velocity that is desired at time (i+1)τ is chosen
from the neighbors of the current state, and the trajectory in the time interval (iτ, (i + 1)τ)
is a linear transition to the desired next velocity (i.e., constant acceleration). Notice that
the position at time iτ and the selected velocity transition completely determine the position
at time (i + 1)τ . For such a discrete step method, we must show that it is possible to stay
reasonably close to an exact path by this method of moving between neighboring grid-points.
Note that while we still refer to our discretization as a grid, it is not a regular grid-graph in
position space — the actual structure is a grid-graph in velocity space, along with the positions
that correspond to moves on this velocity grid.

Since we want to define a finite grid, at any time step there must be finitely many choices
for the change in velocity over the next time interval. If we let v1,v2, ...,vk be these vectors
(called choice vectors), then for each vector vi we can determine θi, the smallest angle between
vi and any other choice vector. Remember that these vectors are actually change in velocity
vectors, so the velocity at time (i + 1)τ is ṗ(iτ) + vj for the chosen vector vj . We always
include the zero vector (0) in a set of choice vectors to denote that it is possible to stay at
the current velocity during a time interval; thus the set of choice vectors referred to above is
V = {0,v1,v2, ...,vk}. We now argue that θi must vary with ε if we bound the 2-norm of the
acceleration; this implies that the number of choice vectors must grow as ε decreases.

Assume that the angles do not vary with ε, and pick a particular non-zero θi. Let vm
be a choice vector that makes angle θi with vi. Consider a continuous path with maximum
acceleration at an angle that exactly bisects the angle made by vi and vm; it should be obvious
that by making ε sufficiently small, the exact path taking time T simply outruns any path made
up of choice vectors taking time (1 + ε)T . In other words, any approximating path will fall
farther and farther behind the exact path. In particular, in two (or more) dimensions we can
show that there needs to be Ω(1ε ) choice vectors to approximate within an ε factor of optimal.
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Figure 4.2: Possible choice vectors in two dimensions for ε = 1
2 .

Now we examine how to vary the angle between choice vectors with ε. The first method
that comes to mind is to simply use maximal acceleration vectors at angles that are evenly
spaced (and varying with ε); unfortunately, this gives rise to a “grid” that grows exponentially
with the number of time steps, and in fact does not even form a finite graph. The method we
actually use is to superimpose a square grid on top of this set of choices, and then using parts
of this grid with a new neighbor relationship, we have a grid that grows polynomially with the
number of time steps. For a small enough square grid, we can track velocities closely; a more
formal presentation of this follows.

Definition 4.3.1 A set of choice vectors {0,v1,v2, ...,vk} is called δ-dense (0 < δ < 1) if for
any non-zero vector v there exists a non-zero choice vector vi such that

vi · v
‖vi‖‖v‖ ≥ δ.

What this means geometrically is that given any vector v, you can always find a choice
vector vi such that the angle between v and vi is small (less than or equal to arccos δ).

The easiest way to obtain a δ-dense set of vectors is to space unit vectors evenly with respect
to angles. As mentioned above, this is not good enough for our application, so we consider a
square grid with small grid length. A set of “almost unit length” (i.e., within one grid length
of unit length, but never more than unit length) choice vectors can be constructed using these
grid-points while assuring that the set is δ-dense. A set of (1− ε

4(1+ε))-dense choice vectors on

a square grid with grid-length ε4 (exactly the conditions required by the following theorem) is
illustrated in figure 4.2 for the specific case of two dimensions and ε = 1

2 . The dots represent
the points of the square grid, and the circle is a unit radius circle drawn for reference.

Theorem 4.3.2 For 0 < ε ≤ 1, let V = {0,v1,v2, ...,vk} be a set of (1 − ε
4(1+ε))-dense choice

vectors that are “almost unit length” (as defined above) on a square grid with grid-length ε4 . Then
for any vector v with ‖v‖ ≤ 1 + 1

1+ε , there is a choice vector vc with ‖v − vc‖ ≤ 1.
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Proof: Let v be any vector with ‖v‖ ≤ 1 + 1
1+ε . Since V = {0,v1,v2, ...,vk} is a set of(

1− ε
4(1+ε)

)
-dense choice vectors, there exists a vc ∈ V such that

v · vc ≥
(
1− ε

4(1 + ε)

)
‖v‖‖vc‖. (4.1)

We are interested in finding ‖v − vc‖. A simple geometric identity states that
‖v − vc‖2 = ‖v‖2 + ‖vc‖2 − 2v · vc = ‖v‖2 + ‖vc‖2 − 2‖v‖‖vc‖ cos θ,

where θ is the angle between v and vc. Fixing ‖vc‖ and θ and viewing the above equation
as a polynomial in ‖v‖, differentiating with respect to ‖v‖ shows that the minimum value of
‖v − vc‖2 occurs when ‖v‖ = ‖vc‖ cos θ. For all ‖v‖ < ‖vc‖ cos θ, the maximum value for
‖v − vc‖2 occurs at the smallest possible value for ‖v‖; i.e., at ‖v‖ = 0. When ‖v‖ = 0, it is
obvious that ‖v − vc‖ = ‖vc‖ ≤ 1.
It is also seen that for all ‖v‖ > ‖vc‖ cos θ, the quantity ‖v−vc‖2 is monotonically increasing,

so the maximum value occurs at the largest allowable value for ‖v‖; in other words, when
‖v‖ = 1 + 1

1+ε . Similar arguments show that ‖v − vc‖2 is maximized when ‖vc‖ = 1 − ε4 and
cos θ = 1− ε

4(1+ε) . In other words, for all v such that ‖v‖ ≤ 1+ 1
1+ε , there exists a choice vector

vc such that

‖v − vc‖2 ≤
(
1 +

1

1 + ε

)2
+

(
1− ε
4

)2
− 2

(
1 +

1

1 + ε

)(
1− ε
4

)(
1− ε

4(1 + ε)

)
.

Algebraic manipulation reveals that the right side of the above inequality is equivalent to

1− ε(8 + 3ε− ε
3)

16(1 + ε)2
.

In this form, it is obvious that for all valid ε (i.e., all ε satisfying 0 < ε ≤ 1), ‖v − vc‖2 ≤ 1.
This completes the proof of the theorem.
This theorem is used to show that with a certain finite set of choice vectors for the change

in velocity, any exact trajectory can be closely tracked using only velocity changes from the
set of choice vectors; the direct application of this theorem can be found in the text following
lemma 4.4.4.
To see how trajectories are constructed from a set of choice vectors, let τ denote the length

of one discrete time interval. Consider a trajectory with an acceleration bound of a. The most
that the velocity can change during one time interval is aτ , so we consider this to be one “unit
length”; it is obvious that theorem 4.3.2 applies using this as one unit, and this fact is made
explicit in the following corollary.

Corollary 4.3.3 For 0 < ε ≤ 1, let V = {0,v1,v2, ...,vk} be a set of (1 − ε
4(1+ε))-dense choice

vectors that are “almost aτ length” on a square grid with grid length ε4aτ . Then for any vector v

with ‖v‖ ≤
(
1 + 1

1+ε

)
aτ , there is a choice vector vc with ‖v − vc‖ ≤ aτ .

Now consider a trajectory made up of N time intervals. Let i : {0, 1, ...,N − 1} → Z+
be an indexing function such that at the beginning of time interval t, we decide to use choice
vector vi(t). First, a preliminary lemma shows how the position component of a trajectory is
affected by the schedule of choice vectors taken. The proof of the lemma is omitted, but is
trivial; simply integrating over the velocity function defined by the indexing function gives the
formula in the lemma. Notice that the velocity at any time kτ is given by ṗ(0) +

∑k−1
t=0 vi(t).
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Lemma 4.3.4 If i is an indexing function as above, then the total change in position is given by

∆pa = ṗ(0)Nτ + (N − 1
2
)τ
N−1∑
k=0

vi(k) − τ
N−1∑
k=0

kvi(k). (4.2)

4.4 Tracking in the Absence of Obstacles

Before talking about trajectories that avoid obstacles, we must first show how paths can be
constructed on our grid. To simplify this, arbitrary trajectories are shown to be easily approx-
imated by a series of moves on the grid, with no obstacles in the environment.
The following lemma is stated in general terms, and will be used in several ways. Applica-

tions will be discussed after the proof of the lemma.

Lemma 4.4.1 Let f : [0, T ] → R be a continuous real-valued function on the closed interval
[0, T ]. If we know that f(0) = f0, f(T ) = f0 + ∆f , and that |df(t)dt | ≤ a for all t ∈ [0, T ], the
following inequalities must hold:

f0T +
∆fT

2
+
(∆f)2

4a
− aT

2

4
≤
∫ T
0
f(t)dt ≤ f0T + ∆fT

2
− (∆f)

2

4a
+
aT 2

4

Proof: First we argue that for any function f(t) satisfying the end-point and derivative con-
straints of the lemma, the following inequalities must hold for all times t in the interval [0, T ].

f(t) ≤ f0 + at (4.3)

f(t) ≤ f0 +∆f + a(T − t) (4.4)

Consider equation (4.3). If the inequality does not hold, then there exists a time t1 such that
f(t1) > f0 + at1, and by the mean value theorem of derivatives there must be some time t2 in

the interval [0, t1] such that f
′(t2) = f(t1)−f0

t1
> a. This contradicts our bound on the derivative

as stated in the lemma, so cannot be true; therefore, equation (4.3) must hold. The argument
for equation (4.4) is similar.
Since any function that satisfies the constraints of the lemma must satisfy both upper bounds

of equations (4.3) and (4.4), it must satisfy the least of the two at any particular time. Let
g1(t) = f0 + at and g2(t) = f0 +∆f + a(T − t), and define g(t) = min{g1(t), g2(t)}. A simple
check of g(t) shows that it satisfies the constraints of the lemma, and by the above argument
must be the point-wise maximum of all valid functions.
Since g(t) is the point-wise maximum of all valid functions, the definite integral of g(t)

over the interval [0, T ] must also be greater than that of any other valid function. Actually
calculating this integral gives the upper bound stated in the lemma. The proof of the lower
bound is similar.
The most immediate and obvious result is stated in the following corollary.

Corollary 4.4.2 If we let Γ be a one dimensional time T trajectory from starting state (p(0), ṗ(0))
to goal state (p(T ), ṗ(T )) that obeys acceleration bound a, then we can say that

p(T ) ≤ p(0) + ṗ(0)T + ∆ṗ(T )T
2

− (∆ṗ(T ))
2

4a
+
aT 2

4

and

p(T ) ≥ p(0) + ṗ(0)T + ∆ṗ(T )T
2

+
(∆ṗ(T ))2

4a
− aT

2

4
.
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pq(t)

pu(t)

ps(t)

pr(t)

Figure 4.3: Position graphs for trajectories in lemma 4.4.4.

Further uses of lemma 4.4.1 will occur when we bound the norm of the integral of vector
functions.

The following lemma explains how we can reduce the acceleration bound of a trajectory and
still meet the same endpoints. This occurs with a corresponding increase in the time required
by the trajectory. Henceforth, assume that whenever ε is mentioned, it satisfies 0 < ε ≤ 1.

Lemma 4.4.3 Given a time T trajectory Γr from (pr(0),0) to (pr(T ),0) with acceleration bound
a, then there exists a trajectory Γq with acceleration bound

a
(1+ε)2 and the same endpoints, but

takes time (1 + ε)T .

Proof: Simply let p̈q(t) = p̈r(
t
1+ε)/(1 + ε)

2 with ṗq(0) = 0 and pq(0) = pr(0). The verification
that the ending conditions are met is now a simple calculus problem, and the details are omitted.

The problem we must now overcome is that given the endpoints of a trajectory, in general
we know very little about what happens between the endpoints. The next lemma is designed to
solve this problem. Example trajectories as constructed by the lemma are shown in figures 4.3
and 4.4. These examples are one dimensional trajectories, and the horizontal axis represents
time.
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ṗq(t)

ṗu(t)

ṗs(t)

ṗr(t)

Figure 4.4: Velocity graphs for trajectories from lemma 4.4.4.

Lemma 4.4.4 If we let c =
√
9+8ε−1
2(1+ε) (note that c < 1 for all valid ε, and c → 1 as ε → 0),

then given an arbitrary time T trajectory Γr with acceleration bound
a

(1+ε)2 , there exists a time T

trajectory Γq which has the same endpoints but does not change velocity for the last time interval
of length (1− c)T . Furthermore, Γq meets acceleration bound a

1+ε .

Proof: We define a temporary trajectory Γs by specifying that ps(0) = pr(0), and then defining
the velocity to be a “time-compressed” version of ṗr(t). More specifically,

ṗs(t) =

{
ṗr(

t
c) , for 0 ≤ t ≤ cT

ṗr(T ) , for cT < t ≤ T

It is easy to see that ps(T ) = (1−c)pr(0)+cpr(T )+(1−c)T ṗr(T ), and that the velocity at
both endpoints of Γs is the same as the corresponding velocities of Γr. Now we define another
auxiliary trajectory Γu by setting the initial position to zero and letting

ṗu(t) =



kt for 0 ≤ t ≤ cT

2
k(cT − t) for cT2 < t ≤ cT
0 for cT < t ≤ T

where k is the constant vector 4(1−c)
(cT )2

[∆pr(T )− ṗr(T )T ]. In other words, Γu is a bang-bang
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trajectory, used for correction of Γs. We can bound ‖k‖:

‖k‖ = 4(1 − c)
(cT )2

[‖∆pr(T )− ṗr(T )T‖] = 4(1− c)
(cT )2

‖
∫ T
0
[∆ṗr(t)−∆ṗr(T )]dt‖

≤ 4(1− c)
(cT )2

∫ T
0
‖∆ṗr(t)−∆ṗr(T )‖dt

Since d‖∆ṗr(t)−∆ṗr(T )‖dt ≤ a
(1+ε)2 , we can apply lemma 4.4.1 to get

‖k‖ ≤ 4(1− c)
(cT )2

[
‖∆ṗr(T )‖T

2
− ‖∆ṗr(T )‖

2(1 + ε)2

4a
+

aT 2

4(1 + ε)2

]

Maximizing the part in brackets (and noticing that ‖∆ṗr(T )‖ ≤ aT
(1+ε)2 ), we get

‖k‖ ≤ 2(1− c)a
c2(1 + ε)2

.

Now we can define the trajectory Γq by ṗq(t) = ṗs(t)+ṗu(t), and pq(0) = pr(0). Notice that
by the above definitions, ṗq(0) = ṗr(0) and ṗq(T ) = ṗr(T ). To verify that the ending position
of Γq is the same as the ending position of Γr, notice that pu(T ) = (1− c) [∆pr(T )− T ṗr(T )],
and adding this to ps(T ) shown above, the resulting simplified expression shows that indeed,
pq(T ) = pr(T ).
To calculate the acceleration bound of Γq, notice that

‖p̈q(t)‖ = ‖p̈s(t) + p̈u(t)‖ ≤ ‖p̈s(t)‖+ ‖p̈u(t)‖ ≤ ‖p̈s(t)‖+ ‖k‖.

Using the previously calculated bound for ‖k‖ and noticing that ‖p̈s(t)‖ = ‖p̈r(t/c)‖
c ≤ a

c(1+ε)2 ,

we see that ‖p̈q(t)‖ ≤ 2−c
c2

a
(1+ε)2

. Substituting c =
√
9+8ε−1
2(1+ε) , we find that

2−c
c2
= 1 + ε, so

‖p̈q(t)‖ ≤ a
1+ε .

Now we examine how closely we can track a trajectory constructed as in lemma 4.4.4. First
we consider tracking only the velocity; staying close to the desired velocity keeps the position
within a tolerable error, and the last part of the interval (the last time interval of length
(1 − c)T which is called the adjustment interval) is used to correct the position while causing
no net change in velocity.
The first step is to divide the time T interval into a series of discrete intervals, each of

length τ . For the current velocity, consider a set of choice vectors as described in corollary 4.3.2
with the unit distance being aτ . Assuming that the approximation is within aτ of the desired
velocity at the beginning of an interval, and since the desired trajectory obeys acceleration
bound a

1+ε , the exact velocity at the end of the interval will be no more than (1+
1
1+ε)aτ away

from the original approximation. Now using the result of corollary 4.3.2, we can pick a choice
vector that results in a final approximation velocity within aτ of the desired velocity.
From the above argument, it should be obvious that if our approximation velocity initially

starts within aτ of the desired velocity, then at every time step the approximation velocity can
be kept within aτ of the desired velocity. This is what we mean by being able to closely track
the velocity of the given trajectory; now we examine how much the position may be in error
from blindly following only the velocity of the given trajectory.
First, a better estimate of how closely the velocity is tracked is needed. Theorem 4.3.2

says that at the times iτ (i an integer), the velocity of the approximating trajectory is within
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aτ of the velocity of the given trajectory, but what happens between these time instances? A
maximizing argument (very similar to that used in the proof of lemma 4.4.1) shows that at all
time instances the error is no more than 32aτ .
Letting Γe and Γa denote the exact and approximating trajectories, respectively, the error

in position displacement can be bounded by

‖
∫ T
0
ṗe(t)dt−

∫ T
0
ṗa(t)dt‖ = ‖

∫ T
0
[ṗe(t)− ṗa(t)] dt‖ ≤

∫ T
0
‖ṗe(t)− ṗa(t)‖dt

≤
∫ T
0

3

2
aτdt =

3

2
aτT

Since the time T interval is divided into length τ time segments, let N be the number of such
segments (so T = Nτ); therefore, over the entire time T interval, the error in displacement is
no more than 32aNτ

2.
Since the given trajectory we are tracking is a trajectory constructed as in lemma 4.4.4, the

velocity does not change for the last (1 − c)T time in the time T interval (the approximating
velocity as constructed above stays constant in this last time also), this last time can be used
to correct the error in position with no net change to the velocity. To show how this is done
more explicitly, a few preliminary lemmas are needed.
The next lemma is a purely combinatorial fact, but needs to be established to see how much

error can be corrected in the adjustment interval.

Lemma 4.4.5 If M is an even integer ≥ 2, we define the sets

SM = {(a1, a2, ..., aM )|ak ∈ {−1, 0, 1} for 1 ≤ k ≤M, and
M∑
k=1

ak = 0}

TM = {
M∑
k=1

kak|(a1, a2, ..., aM ) ∈ SM}.

Then the set TM is simply {−
(
M
2

)2
,−
(
M
2

)2
+ 1, ...,−1, 0, 1, ...,

(
M
2

)2 − 1,(M2
)2}.

Proof: The proof is by induction. For the base case, we will enumerate S2 and T2. It should be
obvious that S2 = {(1,−1), (0, 0), (−1, 1)}, and from this it is easy to construct T2 = {−1, 0, 1}.
This agrees with the lemma, and the base case has been proved.
For the induction, assume that the lemma holds forM−2, and we will prove that this implies

that the lemma is true forM . We will construct a set S′M = {(a1, a2, ..., aM )|(a1, aM ) ∈ S2, and
(a2, a3, ..., aM−1) ∈ SM−2} and a set T ′M = {

M∑
k=1

kak|(a1, a2, ..., aM ) ∈ S′M}. Clearly, S′M ⊆ SM
and T ′M ⊆ TM .
We make the following observation: for all (a1, a2, ..., aM ) ∈ S′M ,

M∑
k=1

kak = a1 +MaM +
M−1∑
k=2

kak = a1 +MaM +
M−2∑
k=1

(k + 1)ak+1

= a1 +MaM +
M−2∑
k=1

kak+1 +
M−2∑
k=1

ak+1
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Since (a2, a3, ..., aM−1) ∈ SM−2, we know that
M−2∑
k=1

ak+1 = 0. Furthermore, since the image of

M−2∑
k=1

kak+1 over S
′
M is TM−2 (by the induction hypothesis), we can use the definition of T ′M and

this observation to see that

T ′M = {M − 1 + e|e ∈ TM−2}
⋃
{e|e ∈ TM−2}

⋃
{1−M + e|e ∈ TM−2}

It is easy to see that if M − 1 +min{TM−2} ≤ max{TM−2}+ 1, then {n|n ∈ T ′M and n ≥ 0} =
{0, 1, ...,M−1+max{TM−2}}. Using the inductive hypothesis for min{TM−2} and max{TM−2},
we see that this is indeed true for all M ≥ 2. A similar argument holds for the negative half of
T ′M . Noticing that

M − 1 + max{TM−2} =M − 1 +
(
M − 2
2

)2
=M − 1 +

(
M

2

)2
−M + 1 =

(
M

2

)2
,

we see that T ′M = {−
(
M
2

)2
,−
(
M
2

)2
+ 1, ...,−1, 0, 1, ...,

(
M
2

)2 − 1,(M2
)2} ⊆ TM .

To see that the inclusion also goes the other way, observe that the maximum value of
TM occurs when a1 = a2 = · · · = aM/2 = −1 and aM/2+1 = aM/2+2 = · · · = aM = 1, so
max{TM} =

(
M
2

)2
. Similarly, it can be shown that min{TM} = −

(
M
2

)2
. The proof of the

lemma is now complete.

This lemma easily applies to give a result about the adjustment interval.

Lemma 4.4.6 Let M be a positive multiple of 2d (d a positive integer), and let e be any d-

dimensional vector with ‖e‖ ≤
(
M
2d

)2
. Define the set

A = {(a1, a2, ..., ad)|ai ∈ {−1, 0, 1} for some 1 ≤ i ≤ d, and aj = 0 for all j 6= i},

so ‖a‖ = 1 or ‖a‖ = 0 for all a ∈ A. Then there exists a sequence v1,v2, ...,vM where each
vi ∈ A such that

M∑
k=1

vk = 0 and
M∑
k=1

kvk =m, where ‖e−m‖ ≤
√
d
2 .

Proof: Let e = (e1, e2, ..., ed) and define

A1 = {(a1, a2, ..., ad)|a1 ∈ {−1, 0, 1}, and ai = 0 for all 2 ≤ i ≤ d},

and

S1 = {(v1,v2, ...,vM/d)|vi ∈ A1 for i = 1, 2, ..., Md and
M/d∑
k=1

vk = 0}.

For any real number r with |r| ≤
(
M
2d

)2
, we can pick an integer m1 such that |r−m1| ≤ 1

2 and

−
(
M
2d

)2 ≤ m1 ≤ (M2d
)2
. By lemma 4.4.5, there exists a sequence (v1,v2, ...,vM/d) ∈ S1 such

that

M/d∑
k=0

kvk = (m1, 0, ..., 0) — there are d− 1 zeros following m1.
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Since |ei| ≤
(
M
2d

)2
for i = 1, 2, ..., d, this error correction can be repeated for each dimen-

sion, so there exists a sequence of M vectors v1,v2, ...,vM from A such that
M∑
k=1

vk = 0 and

M∑
k=1

kvk = (m1,m2, ...,md) =m, where |mi − ei| ≤ 1
2 for i = 1, 2, ..., d. Therefore,

‖m− e‖ ≤
√
(m1 − e1)2 + (m2 − e2)2 + · · ·+ (md − ed)2 ≤

√
d

(
1

2

)2
≤
√
d

2
.

We use a sequence of choice vectors constructed as in lemma 4.4.6 to correct the position
during the adjustment interval. As in corollary 4.3.3 we use aτ as one “unit length”, and set
M = (1−c)N . From lemma 4.4.4 and lemma 4.4.6 it can be seen that making adjustments dur-
ing the adjustment interval as in lemma 4.4.6 keeps the final velocity the same, and the first two

terms of equation (4.2) remain the same, but the last term can be adjusted by ±
(
(1−c)N
2d

)2
aτ2.

Thus as long as this possible adjustment is greater than the possible error, we can adjust the

final position to within
√
d
2 aτ

2 of the exact trajectory, while the final velocity is within aτ of
the exact trajectory.1 This is summed up in the following theorem.

Theorem 4.4.7 If we set N =
⌈
6d2

(1−c)2
⌉
(where c is from lemma 4.4.4) and τ = T

N , then given

any time T trajectory Γe that meets acceleration bound
a

(1+ε)2 , there is a trajectory Γa that uses

only the velocity choice vectors (meeting acceleration bound a) with

‖pe(T )− pa(T )‖ ≤
√
d

2
aτ2

‖ṗe(T )− ṗa(T )‖ ≤ aτ
Furthermore, we then have N = O(d2

(
1
ε

)2
).

Proof: By lemma 4.4.4, we can construct a trajectory Γs with the same endpoints as Γe, such
that it takes time T , meets acceleration bound a

1+ε , and has constant velocity on the interval
[cT, T ]. As was remarked following the proof of lemma 4.4.4, trajectory Γs can be tracked on
our grid (producing a grid trajectory Γt) such that the grid trajectory also takes time T , meets
acceleration bound a, and has constant velocity on [cT, T ]. Furthermore, it was shown that the
error of this approximation can be bounded as

‖pe(T )− pt(T )‖ ≤ 3
2
Naτ2.

‖ṗe(T )− ṗt(T )‖ ≤ aτ
The interval [cT, T ] is used to remove the error from the position (with no net change in

velocity) — the relationship between lemma 4.4.6 and the displacement of a grid trajectory is

1We have implicitly assumed that positive and negative unit length choice vectors for each coordinate axis
exist in our set of choice vectors. This assumption is not too great, as adding these vectors only increases the
size of our set of choice vectors by 2d. Furthermore, these vectors obviously exist on our superimposed square
grid.
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obvious from equation (4.2). By lemma 4.4.6, the error of at most 32Naτ
2 can be reduced to

√
d
2 aτ

2 in (1−c)N steps as long as this error is less than the possible adjustment:
[
(1−c)N
2d

]2
aτ2.

In other words, the error bounds in the theorem are met if

3

2
N ≤

[
(1− c)N
2d

]2
.

This condition is met for all N ≥ 6d2

(1−c)2 , so in particular is met for N =
⌈
6d2

(1−c)2
⌉
, and the error

bounds have been proved.

Due to the odd form of c, the asymptotic growth of N is not clear. Consider 1
1−c ; by

definition this is simply (for ε ≤ 1)
1

1− c =
2(1 + ε)

3 + 2ε−√9 + 8ε ≤
4

3 + 2ε−√9 + 8ε .

The growth rate (as 1ε →∞) can be compared with that of 1ε by taking the limit of the ratio

lim
1
ε
→∞

1
3+2ε−√9+8ε

1
ε

= lim
ε→0

ε

3 + 2ε−√9 + 8ε .

The numerator and denominator of this limit both go to 0, so using L’Hôpital’s rule, the limit
is equal to

lim
ε→0

1

2− 4(9 + 8ε)−1/2 =
1

2− 43
=
3

2
.

In other words, 1
1−c = Θ(

1
ε ). It follows that

N =

⌈
6d2

(1− c)2
⌉
= O(d2

(
1

ε

)2
).

Now we turn attention to tracking within a certain tolerance. By tracking within tolerance
(ηx, ηv), we mean that given an exact trajectory Γe and an approximating trajectory Γa, at all
times t, both of the following inequalities hold.

‖pe(t)− pa(t)‖ ≤ ηx (4.5)

‖ṗe(t)− ṗa(t)‖ ≤ ηv (4.6)

The way we satisfy this is to divide the entire trajectory into a number of intervals, each of
which meet the endpoint conditions of theorem 4.4.7. By making the length of such intervals
sufficiently small, we can insure that equations (4.5) and (4.6) are satisfied.

For any two time T trajectories Γe and Γa satisfying the endpoint constraints of theo-
rem 4.4.7, it is easy to see that the approximating velocity can never be farther than aT +aτ =
aτ(N + 1) from the exact velocity; therefore, to satisfy condition (4.6) we only need to insure
that aτ(N + 1) ≤ ηv , or τ ≤ ηv

a(N+1) .

Guaranteeing that the position tolerance is obtained is also easy. An easy proof using

lemma 4.4.1 shows that at all times the position can never be farther off than (N(N+2)+
√
d)aτ2

2 , so
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to satisfy condition (4.5) we need to insure that τ2 ≤ 2ηx
a(N(N+2)+

√
d)
. Both tolerance conditions

can be satisfied if

τ ≤ min
(√

2ηx

a(N(N + 2) +
√
d)
,

ηv
a(N + 1)

)
. (4.7)

Using the bound for N and noting that we want to control the growth of 1τ , it is interesting
to note that the above formula guarantees that we can track within tolerance (ηx, ηv) with
1
τ = O(

ad2

ε2
max(

√
1
ηx
, 1ηv )) (in other words, polynomial in a,

1
ε , d,

1
ηx
, and 1

ηv
).

The above discussion can be summed up in the following tracking theorem.

Theorem 4.4.8 Given any time T trajectory Γe from (pe(0),0) to (pe(T ),0) that meets accel-
eration bound a, there exists a time (1 + ε)T trajectory Γa on a grid constructed as described in
corollary 4.3.3 that also meets acceleration bound a and satisfies

‖pe(t)− pa((1 + ε)t)‖ ≤ ηx
‖ṗe(t)− ṗa((1 + ε)t)‖ ≤ ηv,

for any given tolerance (ηx, ηv). Furthermore, the time spacing τ of the grid can be made to meet

1

τ
= O

(
ad2

(
1

ε

)2
max

(√
1

ηx
,
1

ηv

))
.

Proof: Consider the trajectory Γe slowed down as by lemma 4.4.3. This new trajectory joins the
same endpoints, takes time (1+ε)T , and meets acceleration bound a

(1+ε)2 . From the given ε and

the number of dimensions d, we can calculate N as in theorem 4.4.7 and τ as in equation (4.7).
Now consider the time required by the slowed down trajectory to be divided into segments,
each of the form [iNτ, (i+1)Nτ ]. Each segment meets all of the requirements to be tracked as
described in the text preceding this theorem, so the result is exactly as stated in the theorem.

4.5 Tracking with Obstacles

As stated in the introduction, we are actually interested in finding paths that avoid a given set
of obstacles. The concepts of “safe” and “also-safe” trajectories reflect the real-world physical
property that robots cannot navigate accurately at high speeds; the terms were introduced in
section 4.1, and are restated here in a more formal setting.

Definition 4.5.1 Let δ(c1, c0) : R → R be an affine function that maps real numbers to real
numbers by δ(c1, c0)(x) = c1x+ c0 (it will map velocity magnitudes to distance magnitudes); when
there is no ambiguity about the values of c1 and c0 or the particular values are unimportant, this
function is written as simply δ. A trajectory Γr is considered δ(c1, c0)-safe (or just safe) if at all
times t during the trajectory, the norm of the distance vector to any object is at least δ(‖ṗr(t)‖).
An approximating trajectory Γq (approximating with accuracy ε) is called “also-safe” if at all times
t during the trajectory, the norm of the distance vector to any object is at least (1− ε)δ(‖ṗq(t)‖).
The notion of safe and also-safe trajectories comes from [12], and a more general version of

the following theorem can be found in their paper (as lemma 3.3). Note that in the following
proof, the only property of the norm that we use is the triangle inequality, so the theorem is
true for all norms, not just the L2 norm.
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Theorem 4.5.2 Let δ(c1, c0) be a safety function as described in definition 4.5.1. A trajectory Γa
(found as described in theorem 4.4.8) that tracks a safe exact trajectory Γe with tolerances

ηx = ηv =
εc0

(1− ε)c1 + 1
will be also-safe.

Proof: For any time t, we define the “safe ball” about Γe to be the set of points within distance
δ(ṗe(t)) of the point pe(t). Similarly, the “also-safe ball” about Γa at time (1+ ε)t is the set of
points within distance (1 − ε)δ(ṗa((1 + ε)t)) of the point pa((1 + ε)t). It is only necessary to
show that the also-safe ball around Γa lies entirely within the safe ball about Γe at all times.
After showing this, it is clear that the also-safe ball around Γa is free of obstacles (since the
safe ball around Γe is free of obstacles); in other words, Γa is also-safe.

To show that the also-safe ball for Γa lies within the safe ball for Γe, consider any point q in
the also-safe ball about pa((1 + ε)t) — we wish to prove that q lies within the safe ball about
pe(t), which is true if and only if ‖q− pe(t)‖ ≤ δ(‖ṗe(t)‖). Of course,

‖q− pe(t)‖ ≤ ‖q− pa((1 + ε)t)‖+ ‖pa((1 + ε)t)− pe(t)‖. (4.8)

We can bound the first term on the right hand side by using the fact that q is within the
also-safe ball of pa((1 + ε)t) (so ‖q− pa((1 + ε)t)‖ ≤ (1− ε)δ(‖ṗa((1 + ε)t)‖)), and then write
this in terms of ṗe(t) and ηv. The final result is that

‖q− pa((1 + ε)t)‖ ≤ (1− ε)δ(‖ṗe(t)‖ + ηv).

The second term on the right hand side of equation (4.8) is easily upper bounded by ηx (by the
very definition of ηx), so

‖q− pe(t)‖ ≤ (1− ε)δ(‖ṗe(t)‖+ ηv) + ηx

Substituting the values of ηx and ηv found in the statement of the theorem, it is easily shown
that

(1− ε)δ(‖ṗe(t)‖+ ηv) + ηx ≤ δ(‖ṗe(t)‖),
so q must lie in the safe ball around pe(t). Since this is true for all points q in the also-safe
ball of Γa, the also-safe ball of Γa must lie entirely within the safe ball of Γe.

Combining this with the other results gives the following corollary (our main result).

Corollary 4.5.3 Given acceleration bounds a, obstacles E , and positive reals ε ≤ 1, c0, and c1,
for any δ(c1, c0)-safe trajectory taking time T , there exists a time spacing τ with

1

τ
= O

(
c1
c0
ad2

(
1

ε

)3)
,

a grid constructed from choice vectors (as described in section 4.3), and a (1−ε)δ-safe approximating
trajectory Γa between grid-points that takes time at most (1 + ε)T . Furthermore, this results in an
approximation algorithm that is fully polynomial in the combinatorial and algebraic complexity of
the environment, and pseudopolynomial in the kinodynamic bounds.
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Proof: The existence proof of the (1−ε)δ-safe approximating trajectory follows from the results
and discussion above. From the derivation of the bound on τ , it follows that a rational grid
size can be chosen where the grid length can be represented with a number of bits that is
polynomial in the lengths of the input parameters. It follows that the results of the other
simple intermediate calculations will also have polynomially many bits. As the grid is searched,
it is reasonably simple to check if the current state (a point on the grid) violates safety margins
with the obstacles — simply find the closest obstacle boundary point to the point being tested,
then check to see if that distance violates the safety function at the current velocity (the state
gives the velocity at the point). Verifying that safety constraints are not violated between grid-
points is a simple extension [12]. This operation is fully polynomial in the geometric complexity
of the obstacles E .
The size of the search space is exactly the number of possible states. Considering how fast

the grid of section 4.3 grows, it is clear that the number of possible velocity vectors in the

search space is bounded by
(
4vmax
εamaxτ

)d
. From the diameter D of the space and equation (4.2),

it should be clear that the number of possible positions is bounded by
(

4D
εamaxτ2

)d
. Combining

these quantities, the number of states is O

([
vmaxD
ε2a2maxτ

3

]d)
; in other words, since 1τ is polynomial

in the dynamics bounds, the total number of grid-points is polynomial in the dynamics bounds
(but not in their lengths — hence the search algorithm is only pseudopolynomial).
Since the grid size is polynomial in the kinodynamic bounds, and the complexity of checking

the validity of each grid-point is polynomial in the geometric complexity, the complexity results
claimed in the theorem are verified.

4.6 Chapter Summary

We have shown that while the (exact) optimal kinodynamic planning problem may be compu-
tationally difficult, it is possible to approximate the optimal path with our simple algorithm —
simply construct a grid as explained in section 4.3 and perform a search on this grid to find a
path from the start state to the goal state. The main result of this chapter is that if the grid
is constructed within certain parameters (see corollary 4.5.3, equation (4.7), etc.), then for any
safe optimal path there exists an also-safe grid path that is within a (1 + ε) factor of optimal.
The size of the grid is polynomial in the input size, in 1ε , and in the dynamics bounds, so
the result is a polynomial approximation algorithm for kinodynamic planning (where dynamics
bounds are expressed in terms of maximum 2-norm for acceleration).
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Chapter 5

Motion Planning in Hostile
Environments

5.1 Introduction

In alternation (as presented by Chandra, Kozen, and Stockmeyer [16]), the state configurations
are finite strings, and two players (an existential and universal player), beginning at an initial
configuration, alternately make discrete moves chosen from a given finitely described next move
relation. The players make these moves with perfect information of the current position; the
associated decision problem is to determine whether there is a strategy for the existential player
that always reaches a given final accepting configuration. Discrete alternation has proved to
be a very useful notion, with applications in complexity theory, game theory, and parallel
computing.

In this chapter, we investigate an interesting variant of alternation, which we call contin-
uous alternation. Each configuration is a point in a dense space, say <d, and there are again
two players: the existential and universal players. The configuration x is partitioned into two
parts, where each part is controlled by a distinct player. Each player continuously makes moves
satisfying differential constraints of the form F (t, x, x′, x′′, ...), where F defines a set of semi-
algebraic inequalities in the derivatives of x and their norms. We also specify distinguished
initial and final configurations and their derivatives. Again, both players have perfect informa-
tion, and the problem is to determine a continuous strategy for the existential player that is
successful in reaching the final configuration with a continuous trajectory against any dynamic
pursuer. In addition, there may also be a restriction on the time required to reach the final
configuration. Interesting examples of continuous alternation games are the differential pursuit
games considered in game theory (see, for example, [9]). A typical pursuit game has constraints
F (t, x, x′, x′′, ...), where F specifies the geometry of obstacles to be avoided by players, the
shape of the players, as well as a restriction that the players not collide.1 F can also specify
a norm bound on the velocity or acceleration of each player. Such pursuit games are actually
just robotic motion planning problems in the presence of an adversary that tries to stop our
robot.

The complexity of continuous alternation depends very much on the form of the differential
constraints. In this chapter, we provide the first upper and lower bounds on the complexity
of a class of continuous alternation games. In particular, we consider pursuit games in 3

1A collision is defined as an intersection of the players that has non-zero volume. In other words, when
avoiding collisions the boundaries are allowed to intersect, but no points internal to the players may overlap.
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dimensions, where the obstacle sets are polyhedra with fixed rational position in <3, and the
L2 norm of the velocity of each player is bounded. We show that the decision problem for
these pursuit games is exponential time hard. The lower bound is quite surprising, since the
degree of freedom of the players (the dimension d of the configuration space) is constant. This
is the first provable intractability result for a robotics problem with perfect information. In
fact, there had previously been no provable intractability results for any robotic problems with
perfect information, even with n degrees of freedom.

We also give approximation algorithms for a wide class of pursuit games: the velocity
and acceleration have either L∞ or L2 norm bounds, the obstacle sets are (possibly moving)
polyhedra with fixed rational initial positions, and there are certain “safety” constraints on the
closeness that the players can approach obstacles or each other. Our approximation algorithms
allow the existential player to find a strategy that reaches the final configuration within an
additive ε factor (for any ε > 0) of the optimal deadline time. In the case of L2-norm bounds,
we have to exceed the dynamics bounds by a multiplicative factor of ε. The algorithm generalizes
to any type of obstacle (not just polyhedra) that can be tested for collision in O(log n) space,
such as obstacles having constant degree algebraic descriptions.

To emphasize the relationship with discrete alternation, both the lower and upper bounds
are proved using the alternating Turing machine as the model of computation.

There are many variations on the pursuit game we have defined, and some minor changes
can greatly affect the complexity of the problem. For instance, if each player is a single point,
then it can be shown that whenever the pursuer is allowed a velocity bound at least as high as
the evader, the game is easily decided by just calculating the minimum distance to the goal for
each player. This result is proved in section 5.4.

5.2 Lower Bounds

In this section we prove that the pursuit problem in three dimensions is hard for EXPTIME.
We first prove the result for a system where only translations are allowed (no rotations), and
then we show how a similar construction for arbitrary movement can be constructed, yielding
the lower bound for the more general problem.

To prove lower bounds for the pursuit problem, we construct a problem that simulates a
given polynomial space bounded alternating Turing machine (ATM) M . From the classic work
on alternating Turing machines, we know that APSPACE=EXPTIME [16], so our lower bound
follows. To simplify the explanation, we assume that the ATM M uses only n tape cells; the
generalization to an arbitrary polynomial should be obvious.

One possible point of confusion in the proof that follows is that the existential player of the
pursuit game simulates all moves of the ATM (both existential and universal); the universal
player of our continuous game makes the transition choices in universal states, and forces
the existential player to actually perform the appropriate transition. To avoid problems with
terminology, in this section we will refer to the existential player (of the pursuit game) as the
evader, and the universal player as the pursuer.

5.2.1 Basic Geometry and the Encoding of a Configuration

The evader in the construction will be a three-dimensional cube with each side having length
2−4n+1 (note that while many dimensions in our construction are exponentially small, only
polynomially many bits are required to specify the boundary coordinates). Rectangular tunnels
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(b) Folded Turn(a) Simplest Case

Goal Region

Evader

Goal Region

Figure 5.1: Some Basic Constructions

that are exactly 2−4n+1 units tall2 and 4 units wide will be the areas in which the evader will
travel. The position of the evader along the width of this passage will encode the contents of
the ATM’s tape. The general idea is to use the distance from a consistently chosen wall of the
passage (called the zero wall) to represent the tape contents — if this distance is the binary
number 0.a1a2...an, then the tape contents are a1, a2, ..., an. Due to the size of the evader, there
is clearly enough room to do this (the distance between valid configuration encodings would be
2−n), but a slight modification must be made to include the position of the tape head. This
will be discussed in further detail in section 5.2.4.

A similar encoding scheme was used by Canny and Reif [14] to represent the values of
boolean variables in an instance of 3SAT. Their main result was an NP-hardness proof for
3-dimensional minimum path calculation, and we use several ideas from this earlier work. The
most important concept in our lower bound proof is the idea of shortest path classes, modified
slightly from the work of Canny and Reif [14]. Consider a polyhedral object (our robot) among
a set of obstacles, and a given goal region (possibly disconnected). We wish to move our robot
until it touches some point in the goal region. Obviously, if it is possible to reach the goal
region, there is some minimum time T required to do so; the set of all paths to the goal region
that take time T (there can easily be more than one) is the shortest path class for this problem
instance.

In all of our problems, the robot is a small cube (the evader), and the goal region will be
a set of cross-sections of the evader’s passages. For example, consider the simplest case of a
straight, unobstructed passage with the goal region being the end of the passage (see figure 5.1a
for a top view). Obviously, the only path in the shortest path class is the straight-line path
shown in the figure. When the evader follows this path, the distance to the walls of the passage
is preserved.

We will be defining sets of obstacles (called traps) such that any winning strategy for the
evader involves following a shortest path through the trap. The position of the evader in the
cross-section of its passageway reflects the configuration of the ATM, and we have seen how
this is preserved in shortest-path classes along a straight section of the evader’s passage. What
if we want the evader to change the direction of its motion? For this we use the “folded turn”
shown in figure 5.1b. Imagine taking a piece of flat ribbon (representing the evader’s passage)
and folding it at a 45◦ angle — the top view should be like that shown in figure 5.1b. Several

2In the descriptions of this section, “tall” refers to an object’s length in the z-coordinate direction, “wide”
refers to the object’s length in the x-coordinate direction, and “deep” refers to the object’s length in the y-
coordinate direction.
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(b) Shuffler(a) Path Splitter

Goal Region Goal Region

Figure 5.2: More Basic Constructions

shortest path classes are shown in the figure, representing various starting positions for the
evader. The construction we use cannot be exactly as visualized by folding a flat ribbon, since
the passages (and walls) must have some finite thickness. The actual construction consists of
a 45◦ slot cut in the floor of the original passage, and a vertical drop to a second-level passage
(below the first). This second passage is oriented at a right angle to the first.

We can also separate the path classes depending on the half of the passage in which the
evader is traveling. By using a “folded turn” construction, but having the 45◦ slot extending
only across the bottom half of the passage, and having the goal regions set up across the two
resulting passages at an equal distance from the entrance, the path classes will be separated
(see figure 5.2a). The resulting construction is called a “path splitter”.

The shuffler is the most important construction, and can be viewed as a combination of the
above constructions (see figure 5.2b). A path splitter divides the top and bottom path classes,
and a folded turn on the top half of the passages leaves both halves on the same level. Both
passages then take a folded turn to travel horizontally, with the top half of the passages dropping
down to the bottom half with a slight offset from the bottom path classes. Given a discrete set
of valid starting positions for the evader, this effectively interleaves (or shuffles) the path classes,
as shown in the figure. There is a small technical problem with this construction; namely, we
would like the paths for all starting positions to have the same length. Unfortunately, while
all paths starting in the lower half of the passage have the same length, this length is slightly
shorter than the paths starting in the upper half of the passage. To alleviate this problem, the
lower-half path classes are lengthened by adding an additional vertical “jog” (a vertical drop
followed by a vertical rise) after the path splitter. With this addition, it should be clear that
the shuffler works as desired.

The effect of the shuffler is to change the distance of an evader from 0.a1a2...an (as measured
from the zero wall and written in binary fixed point) to 0.0a2a3...ana1. This function is vital
for testing individual bits of the configuration. As in the paper of Canny and Reif [14], the
shuffler halves the width of possible positions for our evader; this was a major problem that
limited the time of the simulation in [14] to polynomial. However, in the current situation the
presence of the pursuer allows us to overcome this problem.

The pursuer will be a rectangular box 5 units wide, 2−4n units tall, and 2−4n units deep.
Since rotations are not allowed, we see that the pursuer cannot travel in the evader’s passage
(since the passage is only 4 units wide), and by making the pursuer’s passages 2−4n units deep,
the evader will not be able to travel in the pursuer’s passages (since the evader is 2−4n+1 units
deep). In this way, we ensure that there are only a few spots of contention between the pursuer
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and evader — namely, those places where the pursuer’s passage intersects with the evader’s
passage.
The actual velocity bounds on the pursuer and evader (vp and ve, respectively) are not

important, but the ratio of the two bounds will determine certain elements of the construction.
For the sake of concreteness, we will let vp = 10ve.

5.2.2 Basic Form of the Proof

We describe a polyhedral environment that has a polynomial size binary encoding. This envi-
ronment will be constructible in O(log n) space by a deterministic TM. We will show that the
players will be forced to play essentially in a discrete manner that simulates the given ATM
M , or else they will immediately lose the game. We will have a set of obstacles (called the
state box) associated with each state of the ATM M . The initial positions for the pursuit game
players are at the entrance of the state box associated with the initial state of M , and the
position of the evader across the width of its passage encodes the input of the ATM (i.e., the
initial tape contents). The goal state of the evader is in the box associated with the accepting
state.
The proofs that follow show that for any winning strategy, the only valid paths through

each state box correspond to valid transitions of the ATM. By induction, any winning strategy
will reach the goal position (corresponding to the accepting state of the ATM) by a series of
valid state transitions; therefore, there is a winning strategy if and only if the ATM accepts.
The canonical strategy for any accepting ATM reflects the appropriate sequence of existential
moves of the ATM.

5.2.3 Traps

The key component in the lower bound construction is the concept of a trap. A trap is a
specific region where the evader will become trapped if the shortest path through the region is
not taken. After being trapped, there will be no way for the evader to reach the goal position.
The basic trap is illustrated in figure 5.3. The “evader move box” is some type of basic

construction, such as a shuffler. The pursuer’s passage starts below the level of the evader’s
passage, and continues through the evader’s passage (the horizontal strip in figure 5.3); when
this passage reaches a certain height, it takes a 90 degree turn to stretch horizontally to a
position after the evader’s move box. At this point, the passage turns down and continues
through the evader’s passage. The length of the pursuer’s passage is carefully chosen (and
set by the height it rises over the evader’s passage) so that the pursuer’s shortest path from
the entrance intersection to the exit intersection takes exactly the time of the evader’s shortest
acceptable path between the intersections. We call the time required by the pursuer to go
between the two intersections with the evader’s passage the threshold time of the trap.
A valid starting position for a trap is as follows. The pursuer is in its passage with its

top flush with the floor of the evader’s passage. The evader starts at a position following
the entrance intersection, with its trailing edge flush with the edge of the intersection. The
remaining degree of freedom for the evader’s position is arbitrary (in fact, it will encode the
ATM’s tape contents). Note that in this position the pursuer and evader are actually touching
at an edge; however, there is no collision as the volume of the intersection is zero.

Theorem 5.2.1 There exists a strategy for the pursuer such that from a valid starting position,
the evader can leave a trap safely if and only if the time it takes to pass the exit intersection is no
more than the threshold time of the trap.



66 CHAPTER 5. MOTION PLANNING IN HOSTILE ENVIRONMENTS

Evader move box

Evader
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Figure 5.3: Basic Trap

Proof: The state of the pursuit game at any time can be completely specified by the positions
of the players; to denote the state at time t, we write st. Let S denote the set of all valid
states. For a specific trap, we define the function Φe : S → < that maps states to an amount
of time. Specifically, for any state s (where the evader is in the trap), let tm be the minimum
time required by the evader to travel to the entrance intersection and first become flush with
it. The function Φe is defined by Φe(s) = tm for all such position-time pairs — this may be a
fairly difficult function to compute, depending on the complexity of the evader move box, but
we are not concerned with the complexity of the pursuer’s strategy. Notice that if s0 is a state
with the evader in a starting position for the trap (as described above), then Φe(s0) = 0. The
function Φp : S → < is defined similarly, but for the pursuer; specifically, Φp(s) is the minimum
time required for the pursuer to travel back to its starting position in the trap.

Now we describe a strategy for the pursuer such that the evader will become caught in the
trap if its path through the trap takes longer than the threshold time. Notice that if both players
travel as fast as possible through the trap, then at all times, Φe(st) = Φp(st) = t. The idea
behind the pursuer’s strategy is as follows: if the evader strays from a minimum distance path,
some additional time is available for the pursuer to cover more ground than the evader; in this
way, the pursuer can reach the exit intersection before the evader leaves the trap. Obviously,
we don’t want the pursuer to get too far ahead of the evader — otherwise, the evader could exit
the trap by reversing its course and leaving through the entrance. Specifically, the pursuer’s
strategy is to travel forward in its passage as fast as possible, as long as Φp(st) ≤ Φe(st)+ 2−4nve .
If such a time is ever reached where Φp(st) = Φe(st) +

2−4n
ve
, then the pursuer simply imitates

the progress of the evader, and this equality is maintained.

We now show that the above strategy for the pursuer has the property that the evader can
leave the trap only by taking a minimum time path to the exit. First, notice that the evader
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Figure 5.4: Forced choice trap

cannot leave the trap past the entrance — if the evader ever starts traveling backwards, then
the pursuer will maintain the equality Φp(st) = Φe(st) +

2−4n
ve
. When the evader first becomes

flush with the entrance intersection we have Φp(st) =
2−4n
ve
, so the pursuer is able to collide with

the evader before the evader can leave the trap. This is because from a position with Φe(st) = 0,

it takes the evader at least 32
−4n
ve
time to travel completely past the entrance intersection and

out of the trap, but it takes the pursuer at most 13 of this time to cross the evader’s passage
(colliding with the evader). A similar argument shows that if the evader ever strays from a
minimum distance path (so Φp(st) > Φe(st)), then the evader cannot leave the exit of the trap
without colliding with the pursuer.

Thus if the threshold time is equal to the shortest path time of the evader, then the evader
must follow a shortest path. However, in the final construction, many traps will be connected
together, so how can we be sure that the pursuer cannot improve its strategy by following a path
backwards in its passage? In other words, with the above pursuit strategy, we can guarantee
that the evader moves forward as quickly as possible — how can we guarantee that the pursuer
will do the same? This is easily done by making the pursuer go forward in order to block a path
to the goal for the evader. This idea is generalized in the notion of a “forced decision trap”.

A top view of the forced decision trap is shown in figure 5.4 — only the evader’s passage
is shown in the figure, and the dotted boxes correspond to intersections with the pursuer’s
passage. The actual 3-dimensional construction is quite complex, and a rough drawing is
shown in figure 5.5. This trap has a single entrance and two exit passages for the evader. Inside
the trap (but not shown in figure 5.4), the pursuer’s passage also splits into two separate paths,
and the evader must pick which exit to take according to the pursuer’s choice. The evader must
choose the correct exit and take the shortest path, or else it will be caught in the trap.

The valid starting position is the same as for the basic trap, with respect to slot S1. The
evader’s passage is a straight passage with a slot cut in its floor (labeled “decision” in figure 5.4).
The passage under the decision slot makes two “folded turns”, and continues as the bottom
exit of figure 5.4.

Shortly after the pursuer’s passage passes through slot S1, it forks into two passages. One
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Evader

Pursuer

Figure 5.5: 3-D Rendering of Forced Decision Trap
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path passes through S2 and then S5, and the other passage goes through S4 and S3. The
requirement on the first passage is that the shortest time from slot S1 to S5 is exactly the time
it takes the evader to travel from slot S1 to S5. Furthermore, the time required to travel from
S1 to S2 must be slightly greater (see the proof of theorem 5.2.2 for the exact requirements)
than the time for the evader to travel from S1 to the decision slot. The second passage has
analogous requirements.
When the pursuer takes the passage to S5, the correct path for the evader is to travel to

the lower exit along its shortest path. Similarly, the evader must take its shortest path to the
upper exit if the pursuer takes the passage to S3.

Theorem 5.2.2 The evader can leave the trap if and only if it follows the canonical shortest path
to the appropriate exit (as chosen by the pursuer).

Proof: In this proof we will assume that the pursuer wants to force the evader to take the
bottom exit of figure 5.4. In such a case, the pursuer stays entirely in its passage between slots
S1, S2, and S5. The case where the pursuer forces the evader to take the top exit is almost
identical to the case presented below, so is not explicitly given here.
As in the proof of theorem 5.2.1, let Φp(s) denote the minimum time required for the pursuer

to travel from its position in state s to its start position in the trap. It is important to remember
that regardless of the moves made by the evader, the pursuer stays only in the passage from S1
to S2 and S5. We define Φe(s) a little differently than in theorem 5.2.1. In particular, let td be
the time required for the evader to reach a position directly above the decision slot. Since the
correct path for the evader is to the bottom exit, label all states with the evader to the right of
the position over the decision slot and to the left of slot S2 as “bad states”. Now define Φe(s)
to be the same as in theorem 5.2.1 whenever s is not a bad state; in other words Φe(s) is the
minimum time required for the evader to travel back to S1. On the other hand, if s is a bad
state then set Φe(s) = td.
Now we describe the timing requirement for the pursuer’s passage to slot S2: the minimum

time required for the pursuer to travel from its start position to a position entirely blocking the
evader’s passage at S2 must be exactly td +

2−4n
ve
. This requirement is easily set by adjusting

how high the pursuer’s passage rises above slot S1.
The pursuer’s strategy is exactly as in theorem 5.2.1: the pursuer travels forward in its

passage as fast as possible while maintaining Φp(st) ≤ Φe(st)+ 2−4nve . If the evader never enters
a bad state, then the set of actions is exactly like a basic trap, so the evader must take its shortest
path by theorem 5.2.1. If the evader ever enters a bad state, then the function Φe(s) remains
constant for some amount of time. During this time, the pursuer can still travel, insuring that
Φe(s) > Φp(s); as in theorem 5.2.1, once this inequality is achieved it can be maintained, and
the evader cannot leave by either the entrance or the bottom exit. Clearly, when the evader
reaches slot S2, then we have had time to reach the point where Φp(s) = Φe(s)+

2−4n
ve
; in other

words, the pursuer will fully block the top exit before the evader reaches S2, so the evader is
completely caught in the trap.
With the above strategy, the only way for the evader to leave the trap is for it to take its

shortest path to the bottom exit. Clearly, the case for forcing the evader to take the top exit is
almost identical, so is not presented here.
By connecting the top exit directly with the goal position (through a tunnel that the pursuer

cannot enter), we can ensure that the pursuer keeps moving forward on its path (to block the
evader from this goal shortcut). The forced decision trap will also be used to simulate universal
states of the ATM.
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Goal Region

Valid End Positions

Figure 5.6: Bad Cases for Unshuffler

5.2.4 ATM Transitions

Consider the following method of representing the tape contents: the 0’s and 1’s on the tape
correspond to a number in base four notation (not all base four numbers will correspond to
valid tape configurations). In the position that is currently being scanned, the digit is changed
from 0 or 1 to 2 or 3, respectively. The distance from a consistently chosen wall (the zero wall)
to the evader encodes this representation. Let d denote this distance. Then the base four tape
configuration representation r is related to d by r = d22n−2.
We can use the shuffler (figure 5.2b) to examine bits of the configuration, but only bits in

even numbered positions will actually represent symbols on the tape (the odd positions mark the
location of the tape head). The path splitter can be used to “peel off” the configuration when
it is shuffled to the currently scanned tape position. Traveling through the shuffler backwards
has the undesirable side-effect of doubling the number of shortest path classes (but also doubles
the width of possible positions for the evader, which is good). In other words, for most input
positions of the evader in the reversed shuffler there are two different shortest paths to the
exit slot, only one of which is the correct unshuffling path (see figure 5.6). The incorrect path
will always end at a position that is not a valid encoding of a base 4 number. This problem is
impossible to overcome in the shortest path proof of [14]. Fortunately, the addition of a pursuer
allows us to fix this problem by using a forced decision trap — one side will go to a verifier for
the tape configuration, so any winning strategy must do the unshuffle correctly (or risk being
trapped in the verifier).

Lemma 5.2.3 Assuming the distance d to the zero wall is an integer multiple of 2−4n+2, there
exists a trap such that only valid encodings of base four numbers can escape the trap (i.e., only
when the evader distance is a multiple of 2−2n+2).

Proof: The basic block is a modified version of the shuffler; it differs from the shuffler in that
the final stage (combining the top and bottom halves of the path splitter) does not have the
offset required by the shuffler. If the evader enters this box at distance d = 2k + d′ from the
zero wall for k ∈ {0, 1} and 0 ≤ d′ < 2, then it leaves the box at distance d′ from the zero wall.
In other words, the valid positions from the upper half of the evader’s passage are overlapped
with valid positions in the lower half.
Repeating this construction 2n times (for geometrically decreasing passage width), the

evader will leave the final exit at distance zero if and only if it entered the construction in
a valid position. Since the evader enters at a multiple of 2−4n+2, all invalid positions will be at
a distance greater than 2−4n+2. By placing a wall in front of all positions further than 2−4n+2
from the zero wall and enclosing this structure in a basic trap, all invalid positions will take
too much time (since they have to go around the wall) and get caught in the trap.
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To perform a state transition, the tape representation is shuffled until the current tape
cell is found (i.e., the evader passage is shuffled until the evader is in the upper half of the
passage). This is accomplished with 2n shufflers in series, with a path splitter placed after
every two shufflers. Even after the maximum number of shuffles (2n), there is still a 2−4n+2
spacing between valid positions for the evader, so it is still a simple matter to distinguish between
different configurations. A transition is easily performed by simply shifting the evader’s position
in its passage (actually, the passage is shifted, and the evader maintains a straight-line path),
followed by the correct number of unshufflers. Following all the unshufflers is a forced decision
trap with one exit linked to a verifier as described in the lemma above (the output is a shortcut
to the goal) — this ensures that all unshufflers work correctly. The total number of gadgets
required is 2n shufflers, 2n unshufflers, n path splitters, a forced decision trap, and a verifier.
The total number of bits required to encode these constructions is clearly polynomial in n.
A set of gadgets is built for every state in the ATM. If the state is existential and there are

k possible transitions out of this state, then the incoming evader passage splits into k passages,
each of which performs a transition as described above. The exit from each transition goes
to the corresponding next state. If the state is universal with k next states, then construct a
dlog ke depth tree of forced decision traps with all but k exits linked directly to the goal. Each
non-goal exit is followed by a construction that performs a transition out of the universal state.
Notice that in existential states, the evader has a free choice of which path to take, but for

a winning strategy it must make a choice compatible with all possible future universal options
(since the pursuer can arbitrarily force any choice in the universal states). We have proved the
following theorem.

Theorem 5.2.4 For any polynomial space bounded ATM and n-bit input x, a pursuit game with
no rotations can be constructed such that a winning strategy exists if and only if the ATM accepts
x. The pursuit game has a polynomial length binary encoding, and can be computed by a Turing
machine in O(log n) space.

To extend the proof to a lower bound when rotations are allowed, consider a pursuer as
above, but with a groove cut in the top. The pursuer passages then have tracks that fit into
the pursuer’s groove and make rotations impossible. Re-examination of the above construction
shows that allowing rotation of the evader does not affect the lower bound proof.

Corollary 5.2.5 For any polynomial space bounded ATM and n-bit input x, a general pursuit
game can be constructed such that a winning strategy exists if and only if the ATM accepts x. The
pursuit game has a polynomial length binary encoding, and can be computed by a Turing machine
in O(log n) space.

The following corollary follows from the fact that APSPACE=EXPTIME.

Corollary 5.2.6 Any algorithm that solves the decision problem for the polyhedral pursuit game
(either with or without rotations) must take at least exponential time in the worst case.

5.3 Approximation Algorithms

In this section, we look at polyhedral pursuit games with various types of dynamics bounds,
and develop approximation algorithms for these games. The closeness of the approximation (as
defined below) is given by a parameter ε > 0. We are also given a deadline time for the pursuit
game that is bounded by a polynomial in 1/ε.
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Given any rational number ε, we call a strategy ε-safe if the strategy will always keep distance
ε between the evader and both the pursuer and all obstacles (notice the similarity between this
notion of safeness and that used in chapter 4). In this section we give an algorithm which,
when given a pursuit game and a safety margin ε, will always find a winning strategy if there
exists an ε-safe strategy. If a winning strategy exists, but there is no ε-safe strategy, then the
algorithm may or may not find a winning strategy (but will never give a bad strategy).

Such approximation algorithms exist for problems where either the velocity or both velocity
and acceleration are bounded, and the bound can be on either the L2 or L∞ norm (although
a slight concession must be made on the dynamics bounds in the L2 case). For each variant
of the problem, we have a different closeness lemma (this is lemma 5.3.1 below, for bounded
L∞ norm of velocity), but the relation to the continuous pursuit games is the same in every
case. In the first section below, we present proofs for the simplest case: bounded L∞ norm of
velocity, with no bound on acceleration. The other cases are similar and involve “closeness”
proofs (which we give in the following sections) that are very similar to the tracking lemmas in
approximately optimal kinodynamic planning (see, for example, chapter 4 of this dissertation
and [23]).

5.3.1 Bounded L∞-norm velocity

The following discrete game will be used on a discretization of the geometry of the continuous
game. Since the reachability sets for the players may be different (due to the different shapes
of the players), we need a way of marking which players can follow which edges. This is the
purpose of the labeling function below.

Consider the following discrete game. The input is a graph where each edge e has a label
le ⊆ {0, 1}. Two players (player 0 and player 1) start at given vertices, and player p is allowed
to traverse edge e if p ∈ le. The game consists of rounds where each player traverses a valid
edge for that player, and we wish to know if there is a strategy for player 0 so that it can reach
a given goal vertex while never coming “close” (within two steps on the graph) to player 1. It
should be clear that this game can be decided in ASPACE(log n) for an n vertex graph.

We show that slight variants of this game can be constructed to solve the ε-safe approx-

imation version of pursuit games. In d-dimensions, the graph will have O(
(
1
ε

)d
) vertices for

bounded L∞ norm velocity, and slightly more (but still
(
1
ε

)O(d)
) for the more complex pursuit

games. We now present the case for pursuit games with a bound on the L∞-norm of the players’
velocity.

If we are given the starting configuration for a pursuit game, and bounds on the L∞ norm
of the velocity for the evader and the pursuer (denote the bounds by ve and vp, respectively),
we superimpose a regular grid G with grid-spacing g on the d-dimensional environment. We
label each grid-point by a d-tuple of integers (x1, x2, ..., xd). A graph is constructed on the
grid by connecting every point (x1, x2, ..., xd) to points (y1, y2, ..., yd) with |xi − yi| ≤ 1 for all
i = 1, 2, ..., d. (This is just a d-dimensional grid-graph with diagonal edges added.) An arbitrary
point on each player is chosen; a player is at grid-point p when the chosen point of the player is
at the grid-point p. The edges of the graph are labeled according to whether the path joining
the two endpoints is free of obstacles for each player.

We will choose a sufficiently small grid-size so that the discrete game is a good approximation
of the continuous game. First, we show that for sufficiently small grid-size, there is always a
good strategy for the evader (traveling on the grid) against a continuous pursuer.
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Lemma 5.3.1 Assume g ≤ 2
9ε. Then if there is an ε-safe strategy for the continuous evader, there

is a 3g-safe strategy that travels only between grid-points.

Proof: Consider any path for the pursuer, and the corresponding ε-safe path (given by the
ε-safe strategy) for the evader. We will approximate the continuous evader’s path with a path
traveling between grid-points. It takes the evader exactly τ = g

ve
time to traverse any edge of

the grid-graph. By induction, it is easy to show that there is a grid-path that is no further than
veτ = g away from the continuous path at all times kτ for k any integer. Furthermore, since
the path is a close approximation at these discrete times, it is easy to show that the grid-path
is no further than veτ + ve

τ
2 =

3
2g at all times.

In particular, since the pursuer is at least ε away from the evader at all times, the distance
from the pursuer to the grid-path evader must be at least ε− 32g ≥ 9

2g − 32g = 3g.
When the pursuer is restricted to traveling on the grid, there is a problem with the chosen

grid-size being incompatible with the pursuer’s velocity bound. For example, if the bounds are
such that vp =

3
2ve, then for each edge traversal of the evader, the pursuer can traverse one

and a half edges. This does not fit into the simple discrete game defined earlier, so we make
the following change. An additional game parameter s (a rational number called the scaling
factor) is introduced, and the effect of this parameter is that the pursuer will make s moves for
each move of the evader. For non-integer values of s, the meaning of this is unclear — if we are
in round r of the game, we actually let the pursuer make brsc − b(r − 1)sc moves. Using this
scheme, the pursuer will always be within one grid-point of the place it would be if fractional
moves along edges were allowed.

In our simulation, we let s = vp
ve
. The following lemma ensures us that restricting the

pursuer to a grid-path is not a great advantage for the evader.

Lemma 5.3.2 If both players are restricted to making movements between grid-points, then any
winning strategy for the evader will also give a winning strategy against a continuous pursuer.

Proof: Consider any continuous path for the pursuer. If fractional edge traversals were allowed,
then we could make an approximating path for the pursuer just as we did for the evader in
lemma 5.3.1. This path is always within 32g of the continuous path, but due to the discretization
of fractional moves, an additional error of g may be introduced. Thus at all times, the grid-path
pursuer is within 52g of the continuous pursuer.

By the definition of the discrete game, we know that the distance between the discrete
versions of the players is at least 3g. Thus the continuous pursuer must be at least 12g away
from the evader (i.e., the evader is not captured by the continuous pursuer). The strategy for
the evader against a continuous adversary is therefore to make exactly the same moves as the
discrete player would make against the discrete approximation of the continuous pursuer. This
is clearly a winning strategy.

The combination of the two preceding lemmas gives the proof of correctness for our approx-
imation algorithm.

Theorem 5.3.3 If g ≤ 2
9ε, then the discrete game will always find a winning strategy when there

is an ε-safe strategy for the original game. Furthermore, any winning strategy found in the discrete
game is also a winning strategy for the continuous game. The sequential time complexity of the
approximation algorithm is (n/ε)O(1).
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Proof: By lemma 5.3.1, if there is an ε-safe strategy, then there is a 3g-safe strategy that only
uses grid moves. Restricting the pursuer to the grid means that at all times the pursuer is
at least 3 edge traversals away from the evader — this is exactly the condition we need to
satisfy for a winning strategy in the discrete game. The second claim in the theorem is exactly
lemma 5.3.2.
The complexity of this algorithm is exactly that of the discrete game, with one minor modi-

fication. We only calculate grid-point adjacencies when a player is at the grid-point in question.
To determine the adjacencies, we only need to do simple calculations on the obstacle descriptions
— this can be done in O(log n) space, so the resulting complexity is ASPACE(d log(1/ε)+log n),
or (n/ε)O(d) sequential time. For constant d, this is simply (n/ε)O(1).
Consider a generalization of this problem where the obstacles are allowed to move with

constant velocity. The location of all obstacle coordinates can then be computed by a simple
linear function of time, and it takes no more space than the original algorithm to compute
vertex adjacencies.

Corollary 5.3.4 Given a pursuit game where obstacles are allowed to move with constant velocity,
if g ≤ 2

9ε, then we can approximately compute a winning strategy (in the sense of the last theorem)

in sequential time (n/ε)O(1).

In the following sections, we describe the discretization required for other forms of dynamics
bounds, and prove closeness lemmas in each case.

5.3.2 Bounded L∞-norm velocity and acceleration

Now we consider a pursuit game where the L∞-norm of both velocity and acceleration are
bounded. We use ve and ae to denote the velocity and acceleration bounds for the evader; vp
and ap represent the velocity and acceleration bounds for the pursuer. The “grid” produced
is not a regular grid in position space, as it was in the previous pursuit game. Instead, we
construct a regular grid in velocity space, and the position grid consists of points corresponding
to moves on the velocity grid. This is exactly the method used in kinodynamic planning, and
we use the results of that work here; for more details on the exact method, see [12] and [23].
The grid construction (from [12]) is specified by the discrete time-step τ (along with the

value of ae). The following closeness lemma for this game is stated in terms of this time-step.

Lemma 5.3.5 Assume τ ≤ min( ε20ve , ve2ae ). Then if there is an ε-safe strategy for the continuous
evader, there is a 34ε-safe strategy that travels only between grid-points.

Proof: The “Strong Tracking Lemma” of [23] states that if τ ≤ min( ηx5ve , ve2ae ), then for any
continuous trajectory meeting velocity and acceleration bounds ve and ae, respectively, there
exists a grid trajectory that is always within distance ηx of the continuous trajectory. The
lemma above follows by setting ηx =

ε
4 .

Now, of course, we must consider what happens when we discretize the continuous pursuer’s
trajectory. We can guarantee that the grid pursuer (with the scaling factor as before) stays
within ε2 of the continuous pursuer’s trajectory as long as τ ≤ min( ε20vp ,

vp
2ap
). Notice that

this means that when approximating both continuous players on the grid, there is always at
least ε4 distance between the players, so the approximating trajectories correspond to a winning
strategy for the evader. This fact, combined with the preceding lemma, gives the following
theorem.
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Theorem 5.3.6 Assume τ ≤ min( ε20ve , ve2ae , ε
20vp
,
vp
2ap
). Then the discrete game will always find

a winning strategy when there is an ε-safe strategy for the continuous game. Furthermore, any
winning strategy found in the discrete game is also a winning strategy for the continuous game. For
a constant number of dimensions d, the sequential time complexity of the approximation algorithm
is polynomial in nε and the parameters ve, ae, vp, and ap.

Proof: The size of the grid is given in [23], and it is upper bounded by[(
2vmax
amaxτ

+ 1

)(
D

amaxτ2
+ 1

)]d
,

where amax = max(ae, ap), vmax = max(ve, vp), and D is the diameter of the robot world. Since
the time of our simulation is bounded by a polynomial in (1ε )

O(1), we can bound D by vmax
εO(1)
.

Furthermore, 1τ is polynomial in
1
ε , ve, ae, vp, and ap, so the result is an algorithm polynomial

in these values, as stated in the theorem.

5.3.3 Bounded L2-norm velocity

As in kinodynamic planning, bounding the L2-norm for dynamics bounds adds additional prob-
lems to approximation algorithms. Specifically, we need to be able to closely approximate the
direction of motion (or acceleration, in the following section). In kinodynamic planning, we
find an approximately optimal trajectory that takes time (1 + ε)Tmin, where Tmin is the time
required by the optimal trajectory. In the current pursuit game, we cannot allow this extra
time because of the interaction with the pursuer — instead, we must allow the evader to exceed
its dynamics bounds by a factor of ε. In other words, we allow the evader to have velocity as
high as (1+ ε)ve; the effect of this is identical to allowing the evader to take extra time, without
the bad effects of allowing the evader more time.
In this section, we do not require the full power of the kinodynamic tracking lemma, but we

use another theorem from chapter 4 to prove the following closeness lemma. We use a regular
graph in position space with grid-spacing g, as in the case of bounded L∞-norm velocity, but
only parts of the grid are used. Refer back to chapter 4 for further details.

Lemma 5.3.7 Assume g ≤ ε2

3(2+ε) . Then if there is an ε-safe strategy for the continuous evader,
there is a 3g-safe strategy that travels only between grid-points.

Proof: By theorem 4.3.2, we can track the continuous trajectory of the evader such that at
discrete times we stay within 4gε of the continuous trajectory. Thus, at all times we can stay

within 32
4g
ε =

6g
ε of the continuous trajectory. Since the continuous trajectory is ε-safe, this

approximating trajectory is always at least ε − 6g
ε distance away from the pursuer and all

obstacles. The proof is completed by noticing that

ε− 6g
ε
≥ ε− 2ε

2 + ε
=
ε2

2 + ε
≥ 3g.

The remainder of the proof of correctness for this case is almost identical to the bounded
L∞-norm velocity case, so is not spelled out here. The result is the following theorem.

Theorem 5.3.8 If g ≤ ε2

3(2+ε) , then the discrete game will always find a winning strategy when
there is an ε-safe strategy for the original game. Furthermore, any winning strategy found in the
discrete game is also a winning strategy for the continuous game. The sequential time complexity
of the approximation algorithm is (n/ε)O(1).
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5.3.4 Bounded L2-norm velocity and acceleration

When the L2-norm of both velocity and acceleration are bounded, we use all of the ideas from
the previous cases, in addition to the full L2 tracking lemma from [25] (we could also use the
tracking lemma from chapter 4, but the bounds of [25] are slightly better). As in the previous
L2-norm case, we must allow the evader to slightly exceed its dynamics bounds; specifically, we
allow the approximating evader to have velocity (1 + ε)ve and acceleration (1 + ε)

2ae.

We state the following closeness lemma without proof — the proof is similar to the proof of
lemma 5.3.5, but uses the kinodynamic tracking lemma from [25] (i.e., lemma 6.3 from [25]).

Lemma 5.3.9 Assume τ ≤ ε

2
√
ae(48+2ε)

. Then if there is an ε-safe strategy for the continuous

evader, there is a 34ε-safe strategy that travels only between grid-points.

The final result for the bounded L2-norm velocity and acceleration game is stated in the
following theorem.

Theorem 5.3.10 Assume τ ≤ ε

2
√
amax(48+2ε)

. Then the discrete game will always find a winning

strategy when there is an ε-safe strategy for the continuous game. Furthermore, any winning
strategy found in the discrete game is also a winning strategy for the continuous game. For a
constant number of dimensions d, the sequential time complexity of the approximation algorithm is
polynomial in nε and the parameters ve, ae, vp, and ap.

5.4 The Point-Robot Pursuit Game

In many other robotics problems, it can be assumed that the robot is a single point; more
difficult problems are reduced to a point-robot problem by growing the obstacles according to
the shape of the robot. In the pursuit game, there are two moving robots with possibly different
shapes, so this obstacle-growing technique will not work.

In this section, we consider the pursuit game where each player is a single point, and show
that this problem is computationally easier than the original pursuit game. We bound the
velocity (but not acceleration) of each player, and further restrict the pursuer’s velocity bound
to be at least as high as the evader’s velocity bound. Notice that this game is identical to the
game used in the lower bound construction of section 5.2, except that the players are points.
A key factor of the lower bound proof is that each player can only travel in its own passage,
restricting the points of contention to several discrete locations. We cannot use this construction
when the players are points, so the lower bound does not apply to this restriction. In fact, we
can show that in this case, the problem is easily reducible to the shortest path problem.3 We
first prove the following theorem, showing the relationship between the point-robot pursuit
game and the shortest path problem.

Theorem 5.4.1 In the point-robot pursuit game described above, there exists a winning strategy
for the evader if and only if its fastest path to the goal is quicker than the pursuer’s fastest path to
the goal.

3The reduction used is a Turing reduction. In other words, we assume that there is an oracle for shortest
path, and in particular, our reduction makes only a constant number of calls (two) on the oracle.
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Proof: Let Te (resp. Tp) be the minimum time required for the evader (resp., pursuer) to reach
the goal. These can easily be calculated from the shortest distance path to the goal simply by
dividing the distance by the maximum allowed velocity.
First assume that there is no winning strategy for the evader. Then, in particular, there

is some trajectory for the pursuer that collides with the evader traveling along its fastest path
to the goal. Let the time of collision be tc. Ignoring the evader, the pursuer could follow its
collision path until time tc, and then follow the remaining segment of the evader’s fastest path
to the goal. This new path for the pursuer requires time

tc +
ve
vp
(Te − tc) ≤ tc + Te − tc = Te

(recall that the evader’s velocity bound is no greater than the pursuer’s bound, so vevp ≤ 1). In
other words, if the pursuer can always catch the evader, then the pursuer’s fastest path to the
goal takes no longer than the evader’s fastest path to the goal.
Now assume that the purser’s fastest path to the goal takes no longer than the evader’s

fastest path. Then a winning strategy for the pursuer is to simply move to the goal as fast as
possible, effectively blocking the evader from the goal. In other words, there can be no winning
strategy for the evader.
This proves both directions of the “if and only if” statement in the theorem.
From the above theorem, the following corollary is obvious.

Corollary 5.4.2 The point-robot pursuit game described above is Turing reducible to the shortest
path problem, and only two calls on the shortest path oracle are required.

5.5 Open Problems

There are many open problems in the area of pursuit games. One of the most interesting
questions is to see what type of lower bound can be derived for pursuit games in which the
L∞ norm of velocity is bounded. Notice that in our lower bound construction, the position
of the evader along the width of the passage acted as a “memory” of previous moves. With
bounded L∞ norm, the dimension representing the width of the passage is free to move with no
decrease in the time it takes to travel through a basic trap. This allows the evader to “cheat”
by performing invalid state transitions.
Another interesting open problem is to look at exact solutions for restricted games. For

instance, many interesting problems have few (or no) obstacles. In addition, the lower bound
is for three or more dimensions; are exact solutions possible in two dimensions?
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Chapter 6

Conclusion

As promised in the introduction, we have proved significant results in two areas: circuit com-
plexity (parallel algorithms) and computational robotics. These areas contain problems from
both extremes of computational complexity. The problems studied in circuit complexity are
typically very easy (computationally), and the problems from computational robotics are quite
difficult, usually requiring approximation algorithms of the type we have given here.
Both areas provide many opportunities for future research. The problem of integer division

using logspace-uniform boolean circuits (studied in chapter 2) has proved to be quite difficult.
In particular, after many years of work, no one has been able to design a polynomial-size
O(log n)-depth circuit family for integer division. The iterative methods of chapter 2 work very
well for reducing the size of the circuit family, but all known iterative methods seem to require
Ω(log n log log n) depth.
Examining the power of threshold circuits is also an intriguing and important question. In

many models of computation, results about the power of the model are possible by first relating
the model to a well-understood mathematical concept. The results of chapter 3 are hopefully
a first step to understanding the exact power of constant-depth threshold circuits.
Computational robotics, the subject of chapters 4 and 5, is a relatively new field, and has

many open problems. While many problems from robotics are computationally intensive, the
approximation algorithms from chapters 4 and 5 show that even very difficult problems can be
at least approximately solved. For many problems, approximation seems to be the only hope
of handling the problem in practice — evidence of this comes from the EXPTIME-hard lower
bound for pursuit games in chapter 5, and the corresponding approximation algorithm.
The preceding paragraphs suggest directions for future research in the areas of circuit com-

plexity and computational robotics, as well as reflect some of the future research interests of
the author. This is a very fast-paced time for computer science, and many significant advances
can be expected in the coming decade.
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