
ON THRESHOLD CIRCUITS AND POLYNOMIAL COMPUTATION ∗

JOHN H. REIF† AND STEPHEN R. TATE†

Abstract. A Threshold Circuit consists of an acyclic digraph of unbounded fanin, where each
node computes a threshold function or its negation. This paper investigates the computational
power of Threshold Circuits. A surprising relationship is uncovered between Threshold Circuits and
another class of unbounded fanin circuits which are denoted Finite Field ZP (n) Circuits, where each
node computes either multiple sums or products of integers modulo a prime P (n). In particular, it
is proved that all functions computed by Threshold Circuits of size S(n) ≥ n and depth D(n) can
also be computed by ZP (n) Circuits of size O(S(n) logS(n) + nP (n) logP (n)) and depth O(D(n)).
Furthermore, it is shown that all functions computed by ZP (n) Circuits of size S(n) and depth D(n)

can be computed by Threshold Circuits of size O( 1
ε2
(S(n) logP (n))1+ε) and depth O( 1

ε5
D(n)).

These are the main results of this paper.

There are many useful and quite surprising consequences of this result. For example, integer
reciprocal can be computed in size nO(1) and depth O(1). More generally, any analytic function
with a convergent rational polynomial power series (such as sine, cosine, exponentiation, square root,
and logarithm) can be computed within accuracy 2−n

c
, for any constant c, by Threshold Circuits of

polynomial size and constant depth. In addition, integer and polynomial division, FFT, polynomial
interpolation, Chinese Remaindering, all the elementary symmetric functions, banded matrix inverse,
and triangular Toeplitz matrix inverse can be exactly computed by Threshold Circuits of polynomial
size and constant depth. All these results and simulations hold for polytime uniform circuits. This
paper also gives a corresponding simulation of logspace uniform ZP (n) Circuits by logspace uniform
Threshold Circuits requiring an additional multiplying factor of O(log log logP (n)) depth.

Finally, purely algebraic methods for lower bounds for ZP (n) Circuits are developed. Using
degree arguments, a Depth Hierarchy Theorem for ZP (n) Circuits is proved: for any S(n) ≥ n,
D(n) = O(S(n)c

′
) for some constant c′ < 1, and prime P (n) where 6(S(n)/D(n))D(n) < P (n) ≤ 2n,

there exists explicitly constructible functions computable by ZP (n) Circuits of size S(n) and depth
D(n), but provably not computable by ZP (n) Circuits of size S(n)

c and depth o(D(n)) for any
constant c ≥ 1.
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1. Introduction. A thresholdk function is a boolean function whose output is 1
depending on whether at least k of its inputs have value 1. For example, a threshold5
function is defined to be 1 if at least 5 inputs are 1. A Threshold Circuit is a boolean
circuit in which each node computes a threshold function or its negation, and the
nodes have unbounded fanin.

Many basic physical devices such as transistors and neurons can be modeled as
threshold devices. Since an individual neuron may have very high fanin, a Threshold
Circuit is a natural model for a neural net. For reasons described below, we will be
particularly concerned with bounded depth Threshold Circuits.

Certainly any massively parallel computing device that uses a large number of
relatively slow components must have small computational depth on a given compu-
tation if the overall computation is to be fast. For example, the reaction time of the
lower brain for many nontrivial behavioral and recognition responses is less than .5
seconds, whereas the synapse response time of most neurons of the brain is at least
.005 seconds; therefore, the depth of these particular computations can be no more
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than 100. Nevertheless, in this small depth, many nontrivial functions are computed
by the brain. Minsky and Papert were among the first investigators to observe the
relationship between the lower brain and constant depth Threshold Circuits [15]. In
particular, they developed a model for a learning device, known as a Perceptron,
which is essentially a threshold circuit with constant depth.

There has been a considerable amount of renewed interest in models for the brain
and for learning, and many of the recently proposed models are again essentially con-
stant depth Threshold Circuits. Examples of these models include the Connectionist
Models [5] and the Boltzmann Machine [1, 10]. Recently, Parberry and Schnitger
proved that Boltzmann Machines can be simulated by constant depth Threshold Cir-
cuits [16].

This paper is a further theoretical investigation of bounded depth Threshold Cir-
cuits. In particular, we consider the following fundamental computational question:
What class of functions can be computed by bounded depth Threshold Circuits?

This paper is organized as follows: In § 2, we give definitions of Threshold and
Finite Field Circuits. In § 3, we give a precise statement of our results. In § 4, we give a
simulation of Threshold Circuits by Finite Field Circuits. In § 5, we give simulations
of polytime uniform Finite Field Circuits by polytime uniform Threshold Circuits,
thus characterizing the functions computed by Threshold Circuits of depth D(n) as a
certain class of multivariate polynomial functions computed by Finite Field Circuits
of depth Θ(D(n)). In § 6, we give similar simulation results for logspace constructible
circuits. In § 7 we prove a Hierarchy Theorem for size bounded Finite Field Circuits
with increasing depth. In § 8, we conclude the paper with some open problems,
conjectures, and some comments on how our theoretical results on Threshold Circuits
might be applied to the construction of parallel arithmetic VLSI chips and to biological
studies of learning in neuron nets by interpolation.

2. Circuit Definitions.

2.1. Circuits that Compute Boolean Functions. Fix a value domain Σ. A
function basis is a set F of functions over domain Σk, for each k ≥ 0. We assume
a binary decoding function decoden,n′ : {0, 1}n → Σn′ for decoding length n binary
strings into n′ values in Σ, and an encoding function encodem′,m : Σm

′ → {0, 1}m,
for binary encoding vectors of m′ values in Σ into binary strings of length m. We will
define circuits which take n binary values as input, decode these inputs to an n′-tuple
of values in Σ, make a computation using the functions in F , and then encode the
outputs in binary.

A circuit Cn over function basis F is an oriented, acyclic digraph with a list
of input nodes v1, · · · , vn′ , a list of output nodes u1, · · · , um′ , and a k-adic function
in F labeling each noninput node with fanin k ≥ 0. Given a binary input string
(x1, · · · , xn) ∈ {0, 1}n we decode the input as decoden,n′(x1, · · · , xn) = (y1, · · · , yn′)
where (y1, · · · , yn′) ∈ Σn′ , and assign each input node vi a value val(vi) = yi ∈ Σ,
for i = 1, · · · , n′. For each other node w, with say k predecessors w1, · · · , wk, we
recursively assign w a value val(w) = f(val(w1), · · · , val(wk)) ∈ Σ, where f ∈ F is
the k-adic function that labels node w. Cn finally outputs the binary string given by
encodem′,m(val(u1), · · · , val(um′)) ∈ {0, 1}m (where the output length m is fixed for
the circuit Cn). Thus Cn computes a boolean function from {0, 1}n to {0, 1}m.
We shall allow the circuits considered in this paper to have arbitrary fanin. The

size of circuit Cn is the number of edges of the circuit. The depth of circuit Cn is the
length of the longest path from any input node to an output node. A circuit family is
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an infinite list of circuits C = (C1, C2, · · · , Cn, · · ·) where Cn has n binary inputs. C
computes a family of boolean functions (f1, f2, · · · , fn, · · ·), where fn is the function
of n binary inputs computed by circuit Cn. Let C have size complexity S(n) and
simultaneous depth complexity D(n) if, ∀n ≥ 0, circuit Cn has size ≤ S(n) and depth
≤ D(n).
Circuit family C is polytime (logspace) uniform if there exists a Turing machine

M with nO(1) time bound (O(log n) space bound, respectively), such that given any
n ≥ 1 in unary, M constructs an encoding of circuit Cn.
2.2. Threshold Circuits. A threshold function is a boolean function denoted

δk,∆ : {0, 1}k → {0, 1} such that

δk,∆(x1, · · · , xk) =



1 if

k∑
i=1

xi ≥ ∆
0 otherwise

for x1, · · · , xk ∈ {0, 1}. Let Th denote the set of all threshold functions and their
negations. A Threshold Circuit is a circuit with function basis Th. Note that in
the case of Threshold Circuits the value domain is Σ = {0, 1}, so the number of
input nodes is always the same as the number of boolean inputs, and decode and
encode are simply the identity functions (i.e., no decoding of inputs or encoding of
outputs is required). We let Th(S(n), D(n)) denote the collection of boolean func-
tion families computed by polytime uniform Threshold Circuits of size O(S(n)) and
simultaneous depth O(D(n)). In addition, we will use the notation (logspace uni-
form) Th(S(n), D(n)) to denote the corresponding function families computed by
logspace uniform Threshold Circuits. Note that with this notation, the class of all
functions computed by Threshold Circuits having polynomial size and constant depth
is Th(nO(1), 1).

2.3. Finite Field Circuits. Let p be a prime number. For finite field circuits,
the value domain Σ is Zp, the finite field modulo p. We will let FZp denote the set
of functions consisting of k-adic addition and multiplication taken modulo p for each
k ≥ 1, as well as a constant function giving value y, for each y ∈ Zp. A (Finite
Field) Zp Circuit Cn is a circuit over function basis FZp. Let b = blog pc. Given
binary inputs x1, · · · , xn ∈ {0, 1}, we decode these inputs into n′ = dn/be integer
values decoden,n′(x1, · · · , xn) = (y1, · · · , yn′), where the value yi ∈ Z2b is the number
with binary encoding x(i−1)b+1, x(i−1)b+2, · · · , xmin(n,ib). Note that the decoding of
binary inputs yields only numbers in the range {0, 1, · · · , 2b − 1} ⊆ Zp. The circuit
Cn then makes a computation over FZp as described in § 2.1. If u1, · · · , um′ are
the output nodes, then we encode the output as encodem′,m(val(u1), · · · , val(um′)) =
B1 · · ·Bm′ , where Bi is the ti = min(m − b(i − 1), b) bit binary encoding of the
integer residue of val(ui) mod 2

ti . We let ZP (n)(S(n), D(n)) denote the collection
of boolean function families computed by polytime uniform ZP (n) Circuit families
C = (C1, C2, · · · , Cn, · · ·) where each Cn is a ZP (n) Circuit with size O(S(n)) and
simultaneous depth O(D(n)). We will use the additional notation (logspace uni-
form) ZP (n)(S(n), D(n)) to denote the corresponding function families computed by
logspace uniform ZP (n) Circuits.

3. Statement of Results. In the following we let P (n), S(n), and D(n) be any
positive functions of n such that S(n) ≥ n, and P (n) is prime for all n.
We will first give a simulation of (polytime uniform) Threshold Circuits by (poly-

time uniform) Finite Field Circuits:
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Theorem 3.1. If S(n) ≤ P (n) ≤ nO(1) for all n, then
Th(S(n), D(n)) ⊆ ZP (n)(S(n) logS(n) + nP (n) logP (n), D(n)).

Note: Theorem 3.1 also holds for logspace uniform circuits.
Next we will give a simulation of (polytime uniform) Finite Field Circuits by

(polytime uniform) Threshold Circuits:
Theorem 3.2. ZP (n)(S(n), D(n)) ⊆ Th( 1ε2 (S(n) logP (n))1+ε, 1ε5D(n))
The proof of theorem 3.2 requires that we build up families of Threshold Circuits

for the basic problems of multiplication, iterated sum, and iterated product. The most
costly problem we encounter is iterated product, and this is solved using techniques
introduced for integer division [2, 8, 18].
As a consequence of Theorem 3.2, we have
Corollary 3.3. Suppose an analytic function f(x) has a convergent Taylor

Series Expansion of form

f(x) =

∞∑
n=0

cn(x− x0)n

over an interval |x − x0| ≤ ε where 0 < ε < 1, and the coefficients are rationals
cn =

an
bn
where an, bn are integers of magnitude ≤ 2nO(1) . Then polytime uniform

Threshold Circuits of polynomial size and simultaneous constant depth (i.e., a function
in Th(nO(1), 1)) can compute f(x) over this interval within accuracy 2−n

c

for any
constant c ≥ 1.
Note that Corollary 3.3 follows directly from Theorem 3.2 since a Finite Field

ZP (n) Circuit of size n
O(1) and depth O(1) with P (n) = 2n

O(1)

can simulate the
rational arithmetic required to approximately evaluate f(x).
Corollary 3.3 implies (see [18]) that Th(nO(1), 1) contains a surprisingly rich class

of elementary functions (which can be computed within accuracy 2−n
c

) including:
integer reciprocal, sine, cosine, exponential, logarithm, and square root, as well as
exact computation of the following:

1. integer and polynomial quotient and remainder,
2. interpolation of rational polynomials,
3. banded matrix inverse, and
4. triangular Toeplitz matrix inverse.

These problems can all be efficiently reduced to integer products; also see [3, 4, 12, 18].
Theorems 3.1 and 3.2 yield the characterization:
Corollary 3.4. For S(n) ≤ P (n) ≤ nO(1),

⋃
c≥1
ZP (n)(S(n)

c, D(n)) =
⋃
c≥1
Th(S(n)c, D(n))

For example, for S(n) = nO(1), D(n) = O(1), P (n) ≤ nO(1), we get
ZP (n)(n

O(1), 1) = Th(nO(1), 1)

In other words, the class of functions computed by polytime uniform ZP (n) Circuits
of polynomial size and constant depth is exactly the same as the class of functions
computed by polytime uniform Threshold Circuits of polynomial size and constant
depth.
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Next, we will give a simulation of logspace uniform Finite Field Circuits by
logspace uniform Threshold Circuits.
Theorem 3.5.

(logspace uniform) ZP (n)(S(n), D(n)) ⊆
(logspace uniform) Th((S(n) log(P (n)))O(1), D(n) log log logP (n)).

The proof of Theorem 3.5 uses techniques developed by Reif for integer division
by uniform boolean circuits of bounded fanin, polynomial size, and O(log n log logn)
depth [18]. Theorem 3.5 implies that (logspace uniform) Th(nO(1), log logn) contains
the various elementary functions listed above.
Finally, we derive some lower bound results for Finite Field Circuits using alge-

braic degree arguments.
Theorem 3.6. If D(n) = O(S(n)c

′
) for some constant c′ < 1, D′(n) = o(D(n)),

and 6(S(n)/D(n))D(n) < P (n) ≤ 2n, then there exists a function in ZP (n)(S(n), D(n))
which is not in

⋃
c≥1 ZP (n)(S(n)

c, D′(n)).
Previously, Kung showed that degree bounded polynomials formed a hierar-

chy [13], but this did not immediately imply our result for ZP (n) circuits.

4. Simulation of Threshold Circuits by Finite Field Circuits. The key
to our simulations will be the following:
Lemma 4.1. For prime p, and any function f : Zp → Zp there is a (polytime and

logspace uniform) Zp Circuit of size O(p log p) and depth O(1) which computes f .
Proof. Any function f : Zp → Zp can be interpolated within Zp at all p of its

inputs, yielding a degree p − 1 polynomial p(x) = ∑p−1i=0 cixi. In O(p) size and O(1)
depth, we can compute x2

j

for j = 0, · · · , blog pc. From these values we can compute
xi for each i = 1, · · · , p− 1 in O(p log p) size and O(1) depth. It follows that f(x) is
computable by a Zp circuit of size O(p log p) and depth O(1).

4.1. Proof of Theorem 3.1. Let Cn be a polytime uniform Threshold Cir-
cuit of n binary inputs (x1, · · · , xn) ∈ {0, 1}n, where Cn has size S(n) and depth
D(n). For any prime p = P (n) ≥ S(n), we will construct a Zp Circuit C′n which
will also take n binary inputs (x1, · · · , xn) ∈ {0, 1}n. Let b = blog pc. By definition
(see § 2.3), C′n must have n′ = dnb e input nodes v1, · · · , vn′ which are assigned in-
tegers val(v1) = y1, · · · , val(vn′) = yn′ , where decoden,n′(x1, · · · , xn) = (y1, · · · , yn′).
The first difficulty we must overcome is to compute within C′n the boolean encod-
ing x(i−1)b+1, x(i−1)b+2, · · · , xmin(n,ib) ∈ {0, 1} of each integer yi (i.e., these boolean
values must be computed by C′n from the yi values using only addition and multipli-
cation modulo p). By Lemma 4.1, there exists a polynomial fj(y) of degree ≤ p− 1
which when evaluated in Zp gives the boolean value of the jth bit of y ∈ Zp, so each
x(i−1)b+j = fj(yi) can be computed in C′n using size O(p log p) and depth O(1). The
total size required here is O(np log p).
Next we must simulate in C′n a threshold function δk,∆ of k binary inputs, say

a1, · · · , ak ∈ {0, 1}. This can be done by first computing the sum s =
∑k
i=1 ai, and

then finding the interpolating polynomial of degree k− 1 that computes the function

λ∆(s) =

{
1 s ≥ ∆
0 s < ∆

.

This interpolating polynomial can be evaluated in size O(k log k) and depth O(1). The
negation of δk,∆ can be computed in Zp by a similar application of Lemma 4.1. This
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simulation of the threshold computations of Cn requires the Zp Circuit C
′
n to have

size O(S(n) log S(n)) and depth O(D(n)). Finally, if Cn has (boolean valued) output
nodes u1, · · · , um, then we let C′n have output nodes u′1, · · · , u′m′ where m′ = dmb e.
For i = 1, · · · ,m′ we compute the values val(u′i) =

∑ti
j=1 2

jval(u(i−1)b+j) where ti =
min(b,m − b(i − 1)), so encodem′,m(val(u′1), · · · , val(u′m′)) = (val(u1), · · · , val(um)),
and the (boolean) function computed by C′n is exactly the same as the function com-
puted by Cn. The constructed ZP (n) Circuit C

′
n hasO(S(n) log S(n)+nP (n) logP (n))

size and O(D(n)) depth, and C ′n is polynomial time constructible thus completing the
proof of Theorem 3.1.

Note that if Cn is logspace uniform, then C
′
n is also logspace uniform.

5. Simulation of Finite Field Circuits by Threshold Circuits.

5.1. Computing Arithmetic Using Polytime Constructible Threshold
Circuits. The problem of finding the sum of a set of numbers is called the iterated sum
problem. Pippenger has given a constant depth threshold circuit for multiplication,
and the method used is the straight-forward reduction to iterated sum (i.e., the “grade-
school method” of multiplication) [17]. Looking at just the iterated sum circuit, we
see that Pippenger’s circuit for adding m values, each of n bits, has size O(nm2) and
depth O(1). In the following lemma, we show how to produce a constant depth circuit
for iterated sum with smaller size.

Lemma 5.1. Given any constant ε satisfying 0 < ε ≤ 1, there exists a circuit for
computing the iterated sum of m numbers, each of n bits, (with m ≤ nO(1)) that has
size O(nm1+ε) and depth O(1

ε
).

Proof. Since m ≤ nO(1), it is trivial to show that the result of the iterated sum
will have less than cn bits for some constant c.

To calculated the iterated sum, we build a computation tree with maximum fanout
bmεc and m leaves. Placing the m input values at the leaves, computation proceeds
toward the root of the tree with each internal node computing the sum of its children.
After all computations, the root contains the sum of all m input values. It is easy
to see that the desired tree has O(m1−ε) internal nodes, and a height of O(1

ε
). We

use Pippenger’s circuit at each internal node for a node size of O(nm2ε), so the total
circuit size is O(nm1+ε). Since the depth of each node in the tree is constant, the
total depth of the circuit is the same as the height of the tree, or O(1

ε
).

Using this result, we can also construct small size circuits for discrete Fourier
transform. Let DFTM denote the discrete Fourier transform of an M -vector.

Lemma 5.2. Given any constant ε satisfying 0 < ε ≤ 1, we can construct a circuit
for DFTM (a0, a1, · · · , aM−1) mod 2N + 1 (where M and N are both powers of 2 and
M ≤ N) that has size O(1

ε
MN1+ε) and depth O( 1

ε2
).

Proof. Since N and M are powers of 2, let N = 2n and M = 2m. We will
first show DFTM exists in the ring Z2N+1. If we let ω = 2

2N/M , then by taking
ωM/2 = 2N ≡ −1 (mod 2N + 1) it is easy to see that ω is a principle Mth root
of unity in Z2N+1. Also, since M is a power of 2, we know that M and 2

N + 1 are
relatively prime; therefore, M−1 exists in the ring. By these facts, the ring Z2N+1
supports DFTs on M -vectors.

We introduce a new constant δ =
√
1+4ε−1
2 . We will construct a computation

tree as we did in Lemma 5.1, but the fanout in this case will be f = 2bmδc. Let
v0, v1, · · · , vf−1 be the children of the root, and assume each child recursively computes
the M

f
-vector val(vi) = (xi,0, xi,1, · · · , xi,M/f−1) = DFTM/f (ai, af+i, · · · , aM−f+i).
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Note that these vectors exist since ωf is a principle M
f
th root of unity, and

(
M
f

)−1
exists in Z2N+1. From these vectors we can produce the vector (y0, y1, · · · , yM−1) =
DFTM (a0, a1, · · · , aM−1) by calculating

yi =

f−1∑
j=0

ωjxj,i mod 2
N + 1.(1)

The proof of correctness for (1) is straight-forward, and is not included in this paper.
Equation (1) is a simple modular iterated sum, since multiplication by powers of ω is
just a bit shift of zero cost. This process is repeated down the tree until there are less
than f values in each node. In general, if we label the root as level 0, we are calculating
DFTM/f i at each node of level i from its f children. By using the iterated sum circuit

of Lemma 5.1 (the reduction mod 2N + 1 can be done after a non-modular iterated
sum with a single subtraction), we can do this in size O(M

fi
Nf1+δ) for each node on

level i. Since there are f i nodes on level i, the total size for all nodes of that level is
O(MNf1+δ). There are O(1δ ) levels, so the total size of the circuit is O(

1
δMNf

1+δ).

Since f is O(N δ), the size can be written as O(1
δ
MN1+δ+δ

2

) = O(1
ε
MN1+ε). The

depth of each level is O(1
δ
), so the total depth is O( 1

δ2
) = O( 1

ε2
).

Using this circuit for discrete Fourier transform we can construct a constant depth
multiplication circuit.

Lemma 5.3. Given any constant ε satisfying 0 < ε ≤ 0.6, we can construct a
circuit for multiplication of two N bit numbers that has size O(1

ε
N1+ε) and depth

O( 1
ε3
).

Proof. The circuits that we construct are actually for multiplying two N -bit num-
bers modulo 2N +1, where N is a power of 2. For exact (non-modular) multiplication
of N ′ bit numbers, we use the same circuit with N = 2dlogN

′e+1. It is easy to show
that this will produce the exact answer.

We will denote the two input numbers by a and b, and their product by c. Since
N is a power of 2, let N = 2n, where n is an integer. Letting m = 2bεnc, we can write
any N -bit number a as anm-vector of blocks of s = N

m
bits, a = (a0, a1, · · · , am−1); a0

is the block of least significant bits. We can view this vector as a vector of polynomial
coefficients, and define the polynomial A(x) =

∑m−1
i=0 aix

i. Note that A(2s) = a.
Defining a polynomial for b in a similar way, the product polynomial C(x) = A(x)B(x)
will be such that C(2s) = c.

We use discrete Fourier transforms for the polynomial multiplication, and since
the product polynomial will have degree 2m− 2, we must calculate the transform of
2m-vectors. (We could actually use wrapped convolutions on m-vectors, but nothing
is gained over our asymptotic bounds.) Looking at the straight-forward method of
polynomial multiplication, it is easy to bound max0≤i<2m{ci} < m22s < m(22s + 1).
Since m and 22s+1 must be relatively prime, we can calculate the coefficients of C(x)
modulo both m and 22s + 1, and combine these results for the final answer modulo
m(22s+1). This ring includes as a subset the range of all possible results, so the result
of these modular calculations is also the exact (non-modular) answer. The calculations
modulo m can be done using Lemma 5.1 and “grade-school multiplication”, with a
total size of O(N1+ε) as long as ε ≤ 0.6. We will now concentrate on the cost of the
calculations modulo 22s + 1.

We will again use a divide and conquer tree with the root labeled as level 0. The
fanout of the tree is 2m, and it should be obvious that on level i we are computing
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products of si = N
(
2
m

)i
bit numbers. The DFT2m mod (2

2si+1 + 1) required at this
level can be done in size O(1

ε
2m(2si+1)

1+ε) by Lemma 5.2. On level i, there are (2m)i

such DFTs to calculate, for a total size of O(1ε 4
i+1
(
2
m

)(i+1)ε
(2N)1+ε). For sufficiently

large N (and therefore m) we have
(
m
2

)ε
> 8, so the size of level i can be simplified

to O(1
ε

(
1
2

)i
N1+ε). Summing over all levels we have a total size of O(1

ε
N1+ε).

The depth of each level in the tree is O( 1
ε2
) by Lemma 5.2, so the total depth of

our multiplication circuit is O( 1ε3 ).

Note: The requirement that ε ≤ 0.6 can be relaxed to ε ≤ 1 by simply creating a
new constant δ = ε

2 and absorbing the constant factor increase in depth into the
big-Oh notation; however, this is clearly just a notational manipulation and not an
algorithmic improvement.

The problem of Chinese Remaindering can be stated as follows: given m small
primes p1, p2, · · · , pm (actually, they only have to be pairwise relatively prime) and
an n bit number a, calculate the residue of a mod pi for all 1 ≤ i ≤ m. Conversely,
given the residues modulo each of the primes r1, r2, · · · , rm, we would like to calculate
the least positive a such that a ≡ ri (mod pi) for all 1 ≤ i ≤ m. We will only be
interested in the case where m ≥ n, and this fact simplifies the analysis.
Lemma 5.4. Given any constant ε satisfying 0 < ε ≤ 0.6, we can construct a

circuit for Chinese Remaindering (in both directions) with size O( 1
ε2
m1+ε) and depth

O( 1ε4 ).

Proof. The method of Chinese Remaindering is taken straight from [8], using the
multiplication circuit of Lemma 5.3. The proof of the size and depth of the circuit is
also analogous to that found in [8], and is not included in this paper.

The last basic problem we will look at is that of iterated product over a finite
field. An iterated product of m values a1, a2, · · · , am over the field Zp is defined to be∏m
i=1 ai mod p.

Lemma 5.5. Given any constant ε satisfying 0 < ε ≤ 1, we can construct a circuit
for iterated product of m numbers over the field Zp with size O(

1
ε2
(m log p)1+ε) and

depth O( 1
ε5
).

Proof. Define a new constant δ = ε
5 . We will perform the iterated product in

a tree similar to the tree used for iterated sum. The tree will have fanout mδ, and
will perform an iterated product of mδ values in Zp at each node. The iterated
product at each node is computed by performing a Chinese Remainder step, followed
by calculating the iterated product over each of the smaller fields (using discrete logs,
iterated sum, and powering), and finally a Chinese Remainering step to recover the full
result. This produces the exact iterated product, and by multiplying by an mδ log p
bit approximation to 1/p, we can find the residue modulo p.

To insure there is no loss of information, we must be sure that
∏
pi is greater

than the maximum possible result. Specifically, we must insure that
∏s
i=1 pi > p

mδ .
By basic number theoretic results, we can achieve this with s ≤ ps = Θ(mδ log p).
Obviously, s > log p, so the condition of Lemma 5.4 is satisfied, and we may construct
the required Chinese Remaindering circuit with size O( 1δ2m

2δ(log p)1+δ) and depth
O( 1
δ4
).

After performing the initial Chinese Remaindering step, we must perform an
iterated product over each of the pi. Since for all prime pi, Zpi is a cyclic group, there
is a (not necessarily unique) generator — call it gi — that generates the entire group.
Let fi(x) = g

x
i ; due to the fact that gi is a generator, this function is one-to-one and

onto over Z∗pi . We make tables for fi(x) and f
−1
i (x), each of size O(pi log pi). Within
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a particular field, there must be tables for all mδ input values, so the total size taken
up by tables for pi is O(m

δpi log pi).
The iterated product is calculated by taking the discrete logarithm of all input

values (f−1i (x), above), performing the iterated sum of these values modulo pi − 1,
then raising the generator to the resulting power in Zpi (this is just fi(x), above).
This is a fairly common method of performing iterated product (see, for example,
[2]). The only part we haven’t examined here is the iterated sum. By Lemma 5.1,
we can calculate the exact iterated sum of mδ numbers, each of log pi bits, in size
O(mδ+δ

2

log pi) and depth O(
1
δ ). With an m

δ log pi bit approximation to (1/(pi−1)),
we can reduce this exact result to the result modulo pi−1 with a single multiplication.
By Lemma 5.3, this takes size O(1δm

δ+δ2(log pi)
1+δ) and depth O( 1δ3 ). Therefore the

total complexity of calculating the iterated product of mδ numbers modulo pi is
O( 1
δ2
m2δpi(log pi)

1+δ) size and O( 1
δ4
) depth.

Since this must be done for all s prime fields, the total size complexity of iterated
product of mδ numbers is s times the above value, plus the cost of Chinese Remain-
dering. Using the upper bounds for s and pi, the total size is O(

1
δm
5δ(log p)1+2δ),

and the total depth is O( 1
δ4
). With an mδ log p bit approximation to (1/p), we can

reduce this result (the exact iterated product) modulo p. The complexity of this
multiplication is negligible compared to the rest of the circuit.
All the above results are for one node of the tree. Summing over all nodes and

rewriting in terms of ε, the total size is O( 1
δ2
m1+5δ(log p)1+2δ) = O( 1

ε2
(m log p)1+ε),

and the depth is O( 1ε5 ).
Note: All Threshold Circuit families considered in this section can easily be seen to
be constructed in polynomial time.

5.2. Proof of Theorem 3.2. Now we are ready to prove Theorem 3.2. Con-
sider any polytime uniform ZP (n) Circuit Cn with size S(n) and depth D(n). We

wish to simulate Cn by a Threshold Circuit Ĉn. We will precompute an S(n) logP (n)
bit approximation of the reciprocal of P (n) so that a residue computation mod-
ulo P (n) node of fanin k can be done by just O(k) additions and multiplications
on O(logP (n)) bit binary numbers, followed by a residue computation using an
O(k logP (n)) bit approximation to 1

P (n) ; therefore, each iterated sum or iterated

product required at a node of Cn can be done by applying Lemmas 5.1 and 5.5 us-
ing only size O( 1ε2 (k logP (n))

1+ε) and depth O( 1ε5 ). The total size of the Threshold

Circuit Ĉn is O(
1
ε2
(S(n) logP (n))1+ε), and the depth is O( 1

ε5
D(n)); furthermore, the

circuit family Ĉ is constructible in polynomial time, completing the proof of Theo-
rem 3.2.

6. Log Space Uniform Threshold Circuit Simulation of Arithmetic and
Finite Field Circuits. Let a1, · · · , am ∈ Z2n . Let D(m,n) be the depth required to
compute

∏m
i=1 ai mod (2

n + 1) using a (logspace uniform) Threshold Circuit of size
(mn)O(1).
Lemma 6.1. D(m,n) ≤ D(m,O(mn)1/2) +O(1).
Proof. We use a reduction of Reif from iterated product to discrete Fourier

transform [18]. Assume without loss of generality that n is a power of 2, and let
n̂ = O(mn)1/2 also be a power of 2. Given a1, · · · , am ∈ Z2n , we let ai,j (for
i = 1, · · · ,m and j = 0, · · · , n̂−1) be integers in Z2n/n̂ such that ai =

∑n̂−1
j=0 ai,j2

jn/n̂.
To calculate an iterated product, we first compute in the vector (gi,0, · · · , gi,n̂−1) =
DFT ((ai,0, 2ai,1, · · · , 2n̂−1ai,n̂−1)T ) for i = 1, · · · ,m. By Lemma 5.2, we can easily
compute these DFTs in polynomial size and constant depth. For k = 0, · · · , n̂ − 1
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compute in (logspace uniform) Th((mn̂)O(1), D(m, n̂)) the iterated product ek =∏m
i=1 gi,k mod (2

n̂ + 1). Finally, compute in (logspace uniform) Th((nm)O(1), 1) the

vector (f0, 2f1,···,2n̂−1fn̂−1) = DFT−1((e0, · · · , en̂−1)T ) and output
∑n̂−1
i=0 fi2

in/n̂ =∏m
i=1 ai mod (2

n + 1). The total depth is the depth of the recursion plus a constant
amount, as stated in the lemma.

Lemma 6.2. D(m,n) ≤ O
(
logm log logn

log n

)
.

Proof. For any ε, 0 < ε < 1
2 , we can compute the iterated product of m integers

by first computing the dm/nεe iterated products of nε integers and repeating this
d logmε logne times, getting D(m,n) ≤ d logmε log ne(D(nε, n) + O(1)). Applying Lemma 6.1
and this recurrence a constant number of times, we get

D(nε, n) ≤ D(nε, n1/2) +O(1) ≤ D(nε/2, n1/2) +O(1).
Finally, applying the above recurrence log logn times, we get D(nε, n) ≤ O(log logn).
Hence

D(m,n) = O(
logm

logn
)O(log logn),

which is the bound claimed in the lemma.

6.1. Proof of Theorem 3.5. Note that Lemma 6.2 implies that iterated prod-
uct of nO(1) integers with n bits each is in (logspace uniform) Th(nO(1), log logn).
Since computing the n bit approximation of the reciprocal of an n bit number reduces
to simply computing the iterated sum of n iterated products of size n, we can also com-
pute residues modulo a number with n bits in (logspace uniform) Th(nO(1), log logn).
Theorem 3.5 immediately follows, since we must compute residues, iterated sums and
iterated products of n = O(logP ) bit numbers.

7. Lower Bounds by Degree Bounds. The degree of a multi-variable poly-
nomial f(y1, · · · , yk) is the maximum sum of the powers of the variables appearing in
any term (monomial) of f(y1, · · · , yk).
Lemma 7.1. Suppose f(y1, · · · , yk) is a nonzero polynomial of degree d over a

finite field Zp, and A is a subset of Zp of size σ. If σ > d, then ∃(a1, · · · , ak) ∈ Ak
such that f(a1, · · · , ak) 6= 0.
Proof. By induction on k. For the basis case k = 1, we have f(y1) which is only

a single variable polynomial. It is well known that any nonzero polynomial f(x) of
degree d over any field can have at most d zeros in the field (see, for example [6]), and
since σ > d, at least one a ∈ A must give a nonzero value for f(a).
We make the induction hypothesis that the lemma holds for all polynomials

with < k variables. Since f(y1, · · · , yk) is nonzero, ∃(u1, · · · , uk) ∈ (Zp)k such that
f(u1, · · · , uk) 6= 0. Hence f(u1, y2, · · · , yk) = f ′(y2, · · · , yk) is not a zero polynomial,
and by the induction hypothesis ∃(a2, · · · , ak) ∈ Ak−1 such that f ′(a2, · · · , ak) =
f(u1, a2, · · · , ak) 6= 0. Let g(y1) = f(y1, a2, · · · , ak). g(x) is clearly a non-zero poly-
nomial, so by the basis step there is an a1 ∈ A such that g(a1) 6= 0, and we have
constructed (a1, a2, · · · , ak) ∈ Ak such that f(a1, · · · , ak) 6= 0.
Note: A similar lemma for polynomial identity testing in infinite fields was proved by
Ibarra and Moran [11].

7.1. Proof of Theorem 3.6. Fix any positive integer functions S(n) and D(n),
where D(n) = O(S(n)c

′
) for some constant c′ < 1, and S(n) ≥ n. Now consider a

sequence of primes {P (1), P (2), · · · , P (n), · · ·} where 6(S(n)/D(n))D(n) < P (n) ≤ 2n.
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We will construct a family of ZP (n) circuits C = (C1, C2, · · · , Cn, · · ·) of size S(n) and
depth D(n). In particular, we let v1, · · · , vn′ be the input nodes of Cn, where n′ =
dn/be and b = blogP (n)c ≤ n. We also let w0 = v1 denote the first input node. Each
level L = 1, · · · , D(n) of Cn consists of a single “product” node wL with bS(n)/D(n)c
edges entering wL from node wL−1, so that val(wL) is the bS(n)/D(n)c power of
val(wL−1); wD(n) is the unique output node of Cn. Let y1 = val(v1), · · · , yn′ =
val(vn′) be the input values, and let ~y = (y1, · · · , yn′). We have constructed Cn
of size ≤ S(n) and depth D(n) so that its output is the dn = (bS(n)/D(n)c)D(n)
degree polynomial fn(~y) = val(wD(n)) = (y1)

dn . Note however that by definition,
Cn gets decoded input integers y1, · · · , yn′ only over input domain Z2b , whereas the
computation is over the entire Finite Field ZP (n). Furthermore, the binary encoded

output value is the residue fn(~y) mod 2
b.

Next consider any ZP (n) circuit family C
′ = (C′1, C′2, · · · , C′n, · · ·) where C′n has

size S(n)c, for some constant c ≥ 1, and simultaneous depth D′(n) = o(D(n)). We
can assume without loss of generality that C ′n has only a single output node, which
computes value gn(~y), where ~y = (y1, · · · , yn′) are the decoded integer values of its
input nodes. Again note that gn(~y) has only input domain Z2b . We wish to show
that there exists some ~y ∈ (Z2b)n′ such that fn(~y) 6= gn(~y) mod 2b. Observe that
gn(~y) is of degree ≤

∏D′(n)
L=1 eL where eL is the number of edges of C

′
n entering nodes

of level L. This product form is maximized when each eL = S(n)
c/D′(n), and since∑D′(n)

L=1 eL = S(n)
c we get an upper bound on the maximum possible degree of gn(~y)

as (S(n)c/D′(n))D
′(n).

Since D′(n) = o(D(n)), we have for infinitely many n, and any constant c,

dn = (bS(n)/D(n)c)D(n)

≥ (S(n)/(2D(n)))D(n) > S(n)(1−c′)D(n)

> S(n)cD
′(n) > (S(n)c/D′(n))D

′(n) ≥ deg(gn(~y)).

Fix some such n. For this value of n, by the above derivation dn > deg(gn(~y)) and
dn ≤ (S(n)/D(n))D(n) < P (n)/6, so by Lemma 7.1 there exists some ~y ∈ (ZP (n))n′
such that fn(~y) 6= gn(~y). However, this does not prove Theorem 3.6 because we must
actually show there exists some ~y ∈ (Z2b)n′ such that fn(~y) 6= gn(~y) mod 2b.
We define a new function hn(~y) by the equation

hn(~y) =
(
fn(~y)− gn(~y)− 2b

)
(fn(~y)− gn(~y))

(
fn(~y)− gn(~y) + 2b

)

Note that if fn(~y) = gn(~y) mod 2
b for all ~y ∈ (Z2b)n′ , then hn(~y) = 0 for all inputs

~y ∈ (Z2b)n′ .
The degree of hn(~y) is easily seen to be 3dn, and it is also obvious that hn(~y) is

not identically zero. Let A = Z2b , and since we know that

degree(hn(~y)) = 3dn < 3

(
S(n)

D(n)

)D(n)
<
P (n)

2
< |A|,

we can use Lemma 7.1 to see that hn(~y) 6= 0 for at least one n′-tuple (a1, a2, · · · , an′) ∈
(Z2b)

n′ . Theorem 3.6 follows immediately.
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8. Conclusions.

8.1. Threshold Circuits for Arithmetic Units. Division is by far the most
costly operation for Arithmetic Units. Our polynomial size, constant depth Threshold
Circuits for arithmetic indicate that Threshold Circuits might be quite useful in highly
parallel Arithmetic Units for integer division and trigonometric computations. It is
an interesting question whether a high fanin threshold gate can be manufactured in a
reasonably small area on silicon chips. Constant fanin threshold gates are in fact used
in current NMOS and CMOS technologies. In theory, fanin k threshold gates can be
constructed so that with sufficient area (growing no more than quadraticly with k)
these gates can be driven in unit time. In particular, Mead and Conway describe how
to construct tally circuits (for k input threshold) in VLSI with total area O(k2) and
time O(1) for moderate k using pass transistors [14, pp. 78–80]. The Microelectronics
Center of North Carolina is investigating the use of new microelectronic devices that
may be used for Threshold gates with large fanin. If this is feasible in practice, then
VLSI Arithmetic Units might be designed using Threshold Circuits to run much faster
than currently possible (i.e., compared with the standard bounded fanin boolean logic
gates of conventional VLSI).

8.2. On Learning and Interpolation in Neural Networks.. Our positive
results concerning Threshold Circuits (in particular Theorem 3.2 and Corollary 3.3)
show that Threshold Circuits of polynomial size and constant depth can compute
high accuracy approximations to a large class of multivariate rational polynomials,
and furthermore can interpolate rational polynomials with a constant number of vari-
ables. Learning by algebraic interpolation appears to be appropriate in certain con-
strained cases such as low level vision [7], and would likely be much more efficient
than previously proposed methods for learning (such as found in [1] and [9]), which
are essentially brute force. Nevertheless, even making the apparently reasonable as-
sumption that certain portions of the lower brain act essentially as Threshold Circuits
of constant depth does not necessarily imply that the lower brain is wired so as to
compute approximations or interpolations of multivariate polynomials. However, our
theoretical results do provide strong evidence of the feasibility of neuron nets which
evaluate and interpolate such polynomial functions.

A neural biologist might, for example, make experimental tests to verify this by
using a computer to monitor input-output response functions of neuron nets. Specif-
ically, the lower brain very rapidly provides feedback control for certain muscles; this
control appears to be smooth and nonlinear. Such easily observable responses would
appear to be ideal to monitor and to interpolate. By using known randomized mul-
tivariate polynomial identity tests, such as those of Ibarra and Moran [11], one can
with very high likelihood verify that the input-output response of a neuron net is a
specific interpolated multivariate polynomial.

8.3. Lower Bound Conjectures. Finally, we make two lower bound conjec-
tures concerning Threshold Circuits.

Conjecture 8.1. For D′(n) = o(D(n)), there exists an f ∈ ⋃c≥1 Th(nc, D(n))
which is not in

⋃
c≥1 Th(n

c, D′(n)).
Let DETERMINANT be the problem “given an n×n matrix A with 0,1 elements,

compute the determinant of A.”

Conjecture 8.2. DETERMINANT is not contained in Th(nc, 1) for any con-
stant c.
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