
Multi-user Dynamic Proofs of Data Possession using
Trusted Hardware

Stephen R. Tate
Dept. of Computer Science

UNC Greensboro
srtate@uncg.edu

Roopa Vishwanathan
Dept. of Computer Science

UNC Greensboro
r_vishwa@uncg.edu

Lance Everhart
Dept. of Computer Science

UNC Greensboro
lmeverh2@uncg.edu

Published in the Proceedings of 3rd ACM Conference on Data and Application Security and Privacy (CODASPY), 2013, pp. 353–364.

ABSTRACT
In storage outsourcing services, clients store their data on a
potentially untrusted server, which has more computational
power and storage capacity than the individual clients. In
this model, security properties such as integrity, authentic-
ity, and freshness of stored data ought to be provided, while
minimizing computational costs at the client, and communi-
cation costs between the client and the server. Using trusted
computing technology on the server’s side, we propose prac-
tical constructions in the provable data possession model
that provide integrity and freshness in a dynamic, multi-user
setting, where groups of users can update their shared files
on the remote, untrusted server. Unlike previous solutions
based on a single-user, single-device model, we consider a
multi-user, multi-device model. Using trusted hardware on
the server helps us to eliminate some of the previously known
challenges with this model, such as forking and rollback at-
tacks by the server. We logically separate bulk storage and
data authentication issues to different untrusted remote ser-
vices, which can be implemented either on the same or dif-
ferent physical servers. With only minor modifications to ex-
isting services, the bulk storage component can be provided
by large-scale storage providers such as Google, CloudDrive,
DropBox, and a smaller specialized server equipped with a
trusted hardware chip can be used for providing data au-
thentication. Our constructions eliminate client-side stor-
age costs (clients do not need to maintain persistent state),
and are suitable for situations in which multiple clients work
collaboratively on remotely stored, outsourced data.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.2 [Software]: Security and Protection—authentication,
verification, cryptographic controls

Keywords
Cloud storage; data outsourcing; trusted hardware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’13, February 18–20, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1890-7/13/02 ...$15.00.

1. INTRODUCTION
In this paper, we devise and present natural and impor-

tant extensions of the Dynamic Provable Data Possession
(DPDP) work of Erway et al. [8]. In DPDP, a client main-
tains a dataset on a remote untrusted server, and the system
needs to support data access and modification requests, in-
cluding data additions, modifications, and deletions. The
DPDP protocol provides a proof of integrity when data is
accessed, so that the client is assured that neither the un-
trusted server nor another malicious party has tampered
with the data. The solution of Erway et al. relies on tech-
niques from authenticated data structures, and in particular
maintains an authenticated skip list over data blocks. All
operations on the skip list are O(log n) expected time, and
the proof of integrity consists of a sequence of hashes from
the leaf or leaves corresponding to the data being accessed
up to the root of the skip list, so the time and space required
for such a proof is also O(log n). The client keeps a copy of
the root hash value locally, and that is all that is required
to authenticate any data access from the server.

The DPDP solution just described assumes a model in
which there is a single client using a single client-side de-
vice, which does not allow for one of the main advantages
of remote storage: the ability of users to access their data
from anywhere, on a wide variety of devices, some of which
may have only sporadic network access. Furthermore, we
would like to support not only multiple client-side devices,
but also multiple users, so that any authorized user can up-
date the remotely stored data from any device, but unautho-
rized users (including a malicious server) cannot make any
changes that will be presented as valid on subsequent ac-
cesses. Moving from a single-user, single-device client model
to a multiple-user, multiple-device client model introduces
some obvious problems, as well as some subtle ones, as we
describe next.

Allowing multiple client-side devices in the DPDP model
of Erway et al. [8] means that each device must have access
to the root hash, so there is no single local storage area for
root hashes. Considering a user with a desktop system and a
mobile device, if the root hash is stored and updated on the
desktop computer, and the user later accesses his data from
a mobile device, that device may not have the most current
root hash for verification. A näıve solution would be to store
root hashes remotely with the data, signed by an authorized
user’s key for integrity — since the key would change far less
often than the data hash, keys could be kept on devices in
protected local storage. Alternatively, private signing keys
could even be stored remotely, encrypted by a key that is

derived from a passphrase that can be entered locally on any
device, similar to the way “Firefox Sync” stores passwords
— this technique can be relatively secure, particularly if
combined with some other method of access control.
The problem with the näıve solution is one of fresh-

ness [33]: If we store root hashes on a remote server, signed
or not, when we retrieve them we have no way of know-
ing that the server is returning our most recent value. This
is similar in concept to the well-known notion of a replay
attack, and in the context of remote storage is sometimes
called a “roll back attack” [10] or a “forking attack” [19, 32].
The notion of forking comes from the following scenario:
consider what would happen if the server made a snapshot
of the current data, including the root hash, and then ac-
cepted a change from the user’s desktop system. The user
(or perhaps even a different authorized user) then accesses
the data from a mobile device, and is given the old copy
from the snapshot. These two versions could then be asso-
ciated with these two different client machines, and could
evolve separately, forking the stored data contents into two
(or more) histories of changes that form a consistent view for
that device. If there is no authentic communication between
the devices, there is no way to detect that they are work-
ing with different versions of the data. In the distributed
computing community, it is accepted that this is impossible
to avoid without either a trusted server or communication
between different clients, and a notion of “fork consistency”
has been defined for this: a solution has fork consistency if
the view of any client device is internally consistent, even if
globally there are multiple histories. Examples of work in
the distributed computing community that explores this no-
tion include the SUNDR networked file server [16] and the
SPORC group collaboration system [9].
Since client devices may only occasionally be online, we

cannot rely on direct device-to-device communication to de-
tect forked storage state, so some form of trusted server
must be used. Our focus in this paper is to minimize the
amount of trust needed to create a system that avoids prob-
lems with forking, while maintaining integrity and freshness
of data. In particular, we don’t want to trust the parties
running the server, nor do we want to trust an open com-
puting system, regardless of who is running the system. Our
solution utilizes lightweight trusted hardware, similar to the
Trusted Platform Modules (TPMs) [31] that are being in-
cluded in many current systems. While our technique could
be implemented using current TPM standards, the resulting
solution would be inefficient, so we instead consider TPM
extensions proposed by Sarmenta et al. for efficient “vir-
tual monotonic counters” (counters which can never repeat
values, even across machine reboots) [25]. These extensions
are consistent with existing TPM capabilities, but allow for
better and more efficient support for applications that rely
on monotonic counters. While not providing the same level
of assurance as a purely-hardware based solution, one could
also implement our technique using other forms of small-
size trusted computing models such as TrustVisor [21], or
its predecessor Flicker [22].
In addition to considering a server that maintains a single

data store, we extend this to consider a hierarchy of stored
objects like a standard tree-based filesystem. Our solution
for this model avoids keeping a signed root hash for each
stored object, but rather relies on the hierarchical struc-
ture to define “control points” which have associated signed

values. These control points correspond to places in the
hierarchy in which access control changes, and so are sig-
nificantly less numerous than the number of objects. This
both reduces the number of trusted values that must be
managed through our trusted hardware-based solution and
reduces the number of public key operations that must be
performed to verify signatures when data is accessed. Con-
trol points also give a convenient way to increase through-
put for a complete remote storage solution, by distribut-
ing management of different control points across separate
servers. While certain aspects of our solution, such as the
bulk storage server, can be further distributed for load bal-
ancing or resilience, properties of the authentication server
create significant challenges for distributing further, and we
leave these challenges open for future work.
Contributions: In summary, the work described in this
paper provides the following contributions:

• We extend the DPDP model to allow for data updates
from multiple devices as well as multiple users in an
authorized group, and provide a solution that avoids
client-to-client communication by using a small TPM-
like trusted hardware component. Supporting this so-
lution, we provide two specific implementations that
have slightly different properties (one of which pro-
vides anonymity to users within a group).

• We develop a new, efficient way of validating many
virtual monotonic counters at once, layered on top of
the TPM extensions proposed by Sarmenta et al. [25].
This solution is several orders of magnitude faster than
the straightforward solution, allowing the processing of
requests at realistic server speeds.

• We extend the single data object model to support a
hierarchical filesystem in which updates for different
parts of the hierarchy are restricted to users or groups
of users, and we provide a general framework for effi-
ciently supporting this model.

• We provide some preliminary experimental results that
explore the feasibility of these techniques, and how well
they scale to multiple active users.

1.1 Paper Outline
In Section 2, we briefly review and compare relevant re-

lated work. In Section 3, we describe the multi-user DPDP
scheme using trusted hardware, and describe two possible
implementations of it that use either group signatures or
user certificates. In Section 4, we extend our multi-user
DPDP scheme to multiple objects in a hierarchical filesys-
tem. In Section 5, we provide security definitions and analy-
sis. In Section 6, we present some preliminary experimental
results, and in Section 7, we conclude the paper.

2. RELATED WORK
Security issues in outsourced storage systems have led to

the development of two main solution models: proofs of data
possession (PDP) which offer tamper-evidence, and proofs
of retrievability (PoR) which offer tamper-tolerance. Our
work is designed to fit into the PDP model.

The concept of PDP was introduced by Ateniese et al.
who presented an efficient protocol for static (read-only)
data stores [1], and in later work designed a protocol for
a somewhat limited dynamic setting [3]. Subsequently, Er-
way et al. presented a fully dynamic PDP protocol [8]. Our

paper is most closely aligned with this line of work, in an
extended model with multiple users and multiple client de-
vices, while maintaining the O(log n) efficiency of the best
previous fully dynamic single-user, single-device solution due
to Erway et al. [8]. Specific challenges in this extension were
described in the Introduction.
Iris [28] offers practical solutions to most major security

issues such as integrity, freshness, scalability, and retriev-
ability, but requires a trusted third party that can perform
involved computations and store fairly large quantities of
cached data. Proofs of retrievability (PoRs) [13, 26, 35, 28]
are a related concept in which the client is assured of data
retrievability, in addition to just data integrity and freshness
verification (we do not deal with retrievability). In recent
work in secure storage, Xiong et al. [34] and Goodrich et
al. [11] have independently proposed ways to securely store,
share and distribute data through a public, untrusted cloud.
These works tackle a different issue: they focus on providing
confidentiality of data stored on the server, whereas we focus
on providing integrity and freshness of data. Confidentiality
is an orthogonal issue for us, and can be layered on top of
our protocols (by using encryption, access control policies,
private communication channels, etc.).
Although our work is in the PDP model, which has a dif-

ferent flavor than the distributed computing community’s
idea of remote file storage, there are some distributed com-
puting works that are worth mentioning. One of the early in-
fluential works in secure remote file storage was SUNDR [16,
20] which is a network file system stored on an untrusted,
possibly remote, server. SUNDR introduced the notion of
“fork consistency”that gives any two clients the ability to de-
tect inconsistencies in their views of data, only if the clients
can communicate with each other (and also maintain local
meta-data). It was widely accepted that fork consistency
is the best notion of data consistency one can achieve in
the presence of an untrusted server and non-communicating
clients, and SUNDR’s forking semantics were used by others
to implement remote storage protocols [6, 17, 5]. Our contri-
bution relative to SUNDR and related work is a solution in
the DPDP model in which clients do not communicate with
each other and in which the only trusted server component
is an embedded TPM.
Other works that provide integrity and consistency guar-

antees include SPORC [9], Venus [27] (requires a core group
of trusted clients to be always online), Depot [18], and works
that use a trusted component such as A2M [7]. TrInc [15]
proposes the use of monotonic counter-based attestation in
a peer-to-peer distributed system. We consider monotonic
counters in the context of remote untrusted storage, and
analyze the issues that come up therein (e.g., concurrency,
consistency). Also, as we discuss in Section 6, a direct ap-
plication of monotonic counter-based attestation to remote
storage would result in a system with an unacceptably slow
throughput of between 1 and 3 requests per second, which
is insufficient for practical applications.
All of these distributed computing works are robust, have

many desirable properties, and are interesting in their own
ways. But by and large, they require clients to store some
form of local meta-data for verification purposes. Our use-
case consists of multiple clients that access the server from
non-communicating devices that can have sporadic and/or
untrusted network connections. To avoid the need for all
clients to keep all of their devices always up-to-date with

the latest local meta-data, one of our main motivating goals
is to eliminate client-side meta-data storage.

To increase attestation throughput, we introduce a novel
technique for batching TPM counter attestations. A simi-
lar problem was addressed by Moyer et al. for the purpose
of providing attestations for a general web server, and their
solution shares some properties with ours including the use
of Merkle hash trees [24]. However, while they also answer
multiple client requests with a single TPM attestation op-
eration, their solution relies on an external, trusted time
server. By using a time server, Moyer et al. can provide
attestations for static content using a cached recent attes-
tation, which reduces latency for static requests; however,
handling dynamic requests re-introduces a small latency, re-
sulting in similar performance to our technique, while still
requiring the trusted time server.

3. MULTI-USER DPDP SOLUTION
In this section, we provide a threat model for our work,

and extend the single-user, single-device DPDP model to
the multi-user, multi-device model.

3.1 Threat Model
Assets and Goals: In the most basic model, the asset we
are concerned with is a data object that is stored on a re-
mote, network-accessible resource, and associated metadata
that is maintained to support the security requirements.
The goal is to preserve integrity (including authentication
of updates) and freshness of the data object as seen by re-
mote clients. In particular, users accessing the data object
should be able to tell if the data that they received is the lat-
est data that was stored by an authorized user (see “parties”
below). For the purposes of this paper, we do not consider
other goals such as confidentiality and availability, both of
which can be addressed independently (e.g., [34, 11, 4, 18]).
Extensions to multiple objects with more involved group-
oriented access control policies are considered in Section 4.
Parties: The main parties actively involved in the system
are clients and the service providers. The service providers
are the Storage Server (SS) and the Authentication Server
(AS), the latter of which is equipped with a Trusted Plat-
form Module (TPM) chip whose properties are described in
Definition 1. Both can potentially be corrupt, could col-
laborate, and can collude with outside parties. Clients and
other parties are divided into authorized and unauthorized
users, and only authorized clients are allowed to modify the
data object in a way that will be accepted by users on subse-
quent accesses. Other non-participating, peripheral parties
include the TPM manufacturer and a Privacy CA that cer-
tifies public keys belonging to the TPM.

Definition 1. The Trusted Platform Security Assumption
is the assumption that TPMs are built by a honest manu-
facturer according to an open specification, and satisfy the
following properties:

1. Tamper-resistant hardware: It is infeasible to extract
or modify secret data or keys that are stored in pro-
tected locations in the TPM, except through well-defined
interfaces given in the TPM specification.

2. Secure Encryption: The asymmetric encryption algo-
rithm used by the TPM is CCA-secure.

3. Secure Signatures: The digital signature algorithm used
by the TPM is existentially unforgeable under adap-
tive chosen message attacks.

4. One-way Functions: For generating hash digests, the
TPM uses strongly collision-resistant one-way func-
tions.

5. Trustworthy PrivacyCA: Only valid TPM-bound keys
are certified by a trusted PrivacyCA.

Note that we do not rely on system-level attestation prop-
erties used in a lot of trusted computing applications, but
only on properties of the TPM chip.
Threat Vectors: Attackers can consist of any collusion be-
tween servers and non-authorized clients, who can intercept
and tamper with communication in arbitrary ways. Beyond
this, we do not enumerate specific attacks, but rather take
the approach that is common in cryptography: we model
all colluding attackers as a single computational adversary,
and any attack that can be performed by this adversary in
polynomial time is fair game. The specific sequence of ac-
tions followed by the adversary, and how it chooses to use
its resources, are non-deterministic in nature. The formal
security properties of our constructions are sketched in the
longer version of this paper [30], and are addressed more
fully in ongoing work.

3.2 DPDP Definitions
The intuition behind DPDP is simple: A server stores a

data object, which can be read from or updated. While the
intuition is simple, a full definition of the precise model was
one of the contributions of Erway et al., who provided careful
definitions of core operations and required communication.
In the simple data model of Erway et al., there is a single
data object with multiple blocks, and blocks can be read,
modified, inserted, or deleted [8]. While page limitations do
not allow for a full repetition of the DPDP model here, we
provide a brief overview, and refer the reader to the original
paper for full details.
The system is initialized using a KeyGen operation which

establishes cryptographic keys. Information is stored on a
server, while the client retains a small amount of verification
information called the metadata. Authenticated retrievals
work by the client evaluating a Challenge function to cre-
ate a retrieval challenge message to send to the server, who
executes a Prove procedure which produces the data being
retrieved along with a proof P of its authenticity, which is
sent back to the user. The user then uses a Verify procedure
to check the proof against a local copy of the data store’s
current metadata Mc. Updates also involve three functions,
where the client starts by executing a PrepareUpdate func-
tion to create messages to send to the server. The server ex-
ecutes a PerformUpdate function, which updates the data it
is storing, calculates new metadata Mc′ , and creates a proof
P that the update was performed correctly. Upon receiving
Mc′ and P , the client executes a VerifyUpdate function with
the proof and its copy of current metadata Mc to verify that
the update was performed correctly.
Since we are considering multiple users, we refer to the

group of one or more users that is authorized to modify this
data object as the “authorized modifiers.” In Section 4 we
will show how this can be extended to a hierarchical filesys-
tem of objects, supporting different access control lists for
different objects. As explained in the Introduction, the key

to supporting access from multiple devices is the ability to
store the authenticating metadata on a shared but poten-
tially untrusted server, and this causes problems with fresh-
ness and forking attacks. Sarmenta et al. sketched a solu-
tion to a similar problem using trusted hardware to support
monotonic counters [25], but assumed a single user making
updates with access control on the server to enforce this. We
use Sarmenta et al.’s work as a starting point, and devise a
solution that allows us to deal effectively with groups of au-
thorized modifiers, and we also provide significant efficiency
improvements when compared with the original techniques.

3.3 Virtual Monotonic Counters
Sarmenta et al. consider the issue of freshness for remote

storage [25], and propose the use of a TPM as a solution.
Among other capabilities, a standard TPM contains mono-
tonic counters, which are hardware-based counters that can
only be incremented, and will never repeat a value, even
over a reboot. Additionally, TPMs work with Attestation
Identity Keys (AIKs), which are digital signature keypairs
whose secret key is only usable inside the TPM and is only
used for signing (attesting) values that come from inside the
TPM. A local or remote user can obtain the current counter
value with a high level of assurance by having the TPM sign
the counter value along with a user-supplied nonce.

Many interesting applications can be designed using ded-
icated monotonic counters, but unfortunately TPMs sup-
port only a very limited number of monotonic counters in
hardware, and have just one counter active in any boot cy-
cle. The main contribution of Sarmenta et al. was the idea
of “virtual monotonic counters,” leveraging the limited pro-
tected hardware to support a very large number of indepen-
dent monotonic counters, along with two implementations of
this general idea. One solution, called the log-based scheme,
can be implemented using current TPMs, but can be very
inefficient in some situations. The other solution, the hash
tree-based scheme, provides much better performance but
requires small and practical extensions to TPMs.

In the context of a digital wallet application, Tate and
Vishwanathan performed a thorough experimental compari-
son of the log-based scheme and the hash tree-based scheme
under a variety of workloads [29]. A representative result
from that paper showed that when maintaining 1024 vir-
tual counters, the hash tree-based scheme performed around
900 times faster than the log-based scheme for round-robin
counter requests. On realistic non-uniform distributions, the
average gain decreased to around 15 times faster for the
hash-tree based scheme, but the worst case has an amaz-
ing speed difference of over 2000 times. While our remote
storage solution could in fact use either of these virtual
monotonic counter implementations, due to these substan-
tial speed improvements we focus on the hash tree-based
scheme. We next give a quick review of virtual monotonic
counters and the hash tree-based scheme, and then explain
our technique for “batching”attestation requests that allows
the server to attest counter values at a rate that is a couple
of orders magnitude higher than straightforward application
of prior techniques.

3.3.1 Basic Techniques
Hash trees are a well-known tool for authenticating large

data sets [23], where some part of the data set can be au-
thenticated without knowing or processing the rest of the

data set (contrasted with, for example, hashing the entire
data set, requiring re-hashing and processing all data in or-
der to very authenticity). Hash trees work by providing an
authenticating path for any data in a leaf of the tree, along
with a hash value from the root of the tree that can be
compared against a known-good hash value.
Sarmenta et al. show how to support many virtual mono-

tonic counters by using a hash tree of counter values with
the root hash protected by trusted hardware (an enhanced
TPM). While protecting a large number of virtual mono-
tonic counters, the only value that must be closely protected
is the root hash, which is well within the capability of even
limited devices like TPMs. By carefully defining operations
that update the root hash (which require the user to pro-
vide authenticating path information to the TPM), the nec-
essary security properties of virtual monotonic counters can
be assured. While not used by Sarmenta et al. for remote
storage applications, they do allow for data to be associ-
ated with each counter at a hash tree leaf, and that data is
tightly bound to the counter since it must be provided as
leaf-data in any authentication operation. We make use of
this associated data in a non-obvious way, to support access
control in our multi-user DPDP solution. We briefly list op-
erations defined by Sarmenta et al. on virtual monotonic
counters — note that the result of all operations is provided
in the form of an “execution certificate”, which contains the
user-supplied nonce and is signed by a TPM-bound AIK:

• CreateCounter(pos, data, nonce) → id: Creates a new
counter in hash tree position pos, with a random com-
ponent of the id assigned by the TPM (this is so that
hashtree positions can be reused for new counters, with
negligible probability of reusing an actual id that would
“reset” that counter). data is the data associated with
the counter.

• ReadCounter(id, nonce) → (count, data): Returns the
current count value and associated data for counter id.

• IncrementCounter(id, data, nonce)→ count: Increments
counter id and associates new data with the new count
value, returning the incremented counter value.

To these operations we make a simple addition to provide
an attested copy of the root hash — note that we could do
this by simply reading any counter, but providing a direct
command simplifies our applications:

• AttestRoot(nonce) → root hash: Returns an attested
copy of the root hash.

3.3.2 Batching Attestations
While virtual monotonic counters provide the functional-

ity needed for our remote storage solution, the performance
of the basic solutions from Sarmenta et al. would only be
sufficient for low-volume applications. Every data read oper-
ation will require retrieving an attested counter value, which
means the TPM must perform a digital signature operation
for this attestation. Tests timing signature speed of a vari-
ety of version 1.2 TPMs found that digital signature speed
varied from around 300ms to around 760ms [12], and so the
fastest of these TPMs would only be able to make about
three signatures per second. Since every attestation must
include a user-supplied nonce in the signed counter value, it
is not clear how we could satisfy client requests any faster
than this three-per-second baseline; however, we next show

how we can batch requests to greatly improve the rate at
which counter verifications can be provided.

We once again rely on hash trees as a tool to enable the
solution to our problem. Counter attestation requests are of
the form ReadCounter(id, nonce), as described in the pre-
vious section, so consider a sequence of n such requests
given as (id1, nonce1), (id2, nonce2), . . . , (idn, noncen). To
answer these requests efficiently, we create a hash tree with
the request nonces at the leaves, and call the root hash of
this tree TPMnonce. We issue the TPM command Attest-

Root(TPMnonce), getting a signed copy of an execution cer-
tificate containing both the TPM-managed counter hashtree
root and TPMnonce.

The server then assembles responses to attestation re-
quests as follows: For request (idi, noncei), it sends out
the authenticating path from the virtual monotonic counter
hash tree for counter idi (which includes the counter value
and the root hash), the authenticating path from the nonce
hash tree for noncei (which includes TPMnonce), and the
signed attestation that links the counter root hash with
TPMnonce. We argue that this is secure, based on the fol-
lowing reasoning (which we formalize in the full version of
this paper): TPMnonce must have been computed after the
server received noncei, since noncei went into the computa-
tion of TPMnonce through a secure hash function for which
it is infeasible to find collisions. Furthermore, the TPM at-
testation must have taken place after TPMnonce was com-
puted, since that is included in the signed TPM response.
These two facts taken together ensure that the counter root
hash, which the TPM guarantees was current when the at-
testation was made, is no older than the time that noncei
was received by the server. Finally, since the counter hash
tree guarantees that the reported value of counter idi was
current when the attestation was made, then that virtual
monotonic counter value is no older than the time that
noncei was received — this is precisely the freshness guar-
antee that we are seeking.

The technique just described gives a way to answer mul-
tiple attestation requests with a single TPM attestation op-
eration. Since the TPM operation is the bottleneck in re-
sponding to rapid attestation requests, this can give signifi-
cant increases in the rate at which attestation requests can
be answers. When responding to a stream of requests, we
overlap request batching with TPM operations, as shown in
this diagram:

. . .

Max Batch

Wait Time

Max Batch

Wait Time

Requests:

TPM ops:

Max Batch

Wait Time

Batch 1 Batch 2 Batch 3

Requests are denoted by vertical bars, and TPM operations
are denoted by the boxes. At all times the server is ei-
ther in an idle state, meaning no attestation requests are
outstanding, or a batching state. We define a parameter
called the “Max Batch Wait Time” to be amount of time
the system waits after receiving an attestation request until
it starts a TPM operation. If the server is idle and it re-
ceives a request, it sets a timer for “Max Batch Wait Time”
and enters the batching state. When the timer runs out,
the server sends attestation command to the TPM (using

TPMnonce), and re-enters the idle state. When the TPM
command completes, the server constructs attestation re-
sponses, which it sends to clients. Selecting the “Max Batch
Wait Time” is a trade-off between the rate at which requests
can be serviced (the higher the wait time, the larger the
batches, so the more efficient the service), and the maxi-
mum latency of a request.
It is important to note that the client interface for getting

an attested counter value is almost identical to before: the
client provides the counter id and a nonce, and receives a
response that includes a TPM-signed attestation that de-
pends in a strong way on the nonce that the client provided.
Verification on the client side must add a verification of the
nonce hash tree path, but that is the only difference from
the straightforward use of virtual monotonic counters. As we
will see in the Experiments section, this batching technique
significantly increases the rate at which counter attestations
can be produced.

3.4 Multi-User DPDP
To define multi-user DPDP, we first introduce notation

for users and groups, as well as generic notation for testing
group membership. We use U to denote the entire universe
of users, both those with access to the data object and those
without, and there is a designated group G ⊆ U of users that
are authorized to modify the data object. A special user,
known as the group manager and denotedGM , is authorized
to create the data object with the remote storage service and
can designate which users are members of G. We assume a
generic digital signature based service which can be used to
authenticate whether a message was created by a member
of G. In particular, there is a public key PKG associated
with the group, and each user u has an individual signing
key SKG,u associated with this group. Two basic operations
are supported:

• GSign(SKG,u,m) → σ: Used by user u to create a
signature σ on message m.

• GV erify(PKG,m, σ) → true/false: Verifies whether
σ is a valid signature on m for group G (using G’s
public key PKG).

We assume that any such signature scheme satisfies basic
unforgeability properties, and in Section 3.6 we describe two
different schemes to implement this service.
The key problem with extending earlier DPDP results,

such as the work of Erway et al. [8], involves maintain-
ing authentication metadata in a centrally accessible loca-
tion so that clients have assurance that metadata that they
retrieve from this central location is authentic and fresh.
Our solution logically separates the problems of maintain-
ing metadata from the problem of bulk storage into two
servers, the “Authentication Server” (denoted AS) and the
“Storage Server” (denoted SS), respectively. This is a logi-
cal separation, and the two servers could in fact be hosted
on the same physical server, although the requirements are
different. AS requires a TPM, but has low storage and
throughput requirements, whereas SS has high storage and
throughput requirements but does not need a TPM to au-
thenticate operations. The two servers only interact with
client devices, and never directly with each other, so could
in fact be provided by two entirely separate entities.

3.4.1 AS: The Authentication Server
In this section we describe the authentication server AS.

This server is a means for storing metadata associated with
the stored data in such a way that the client can be sure
that it is authentic and fresh. Metadata is stored in a pair
m = (vno,Mc) that ties it to a version number, and AS also
stores a signature σ over m that can be verified as a signa-
ture from an authorized modifier (i.e., GV erify(PKG,m, σ)
accepts the signature as coming from a member of the group
G). When queried, AS can provide both m and the match-
ing σ, and can also use its TPM to attest to the fact that
the version number in m is the current version number. In
the notation below, auth vno refers to this TPM attestation
on the version number: specifically, auth vno will be pro-
duced as the result of an interactive protocol in which the
client sends a random nonce to the server, which executes
the TPM command ReadCounter(id, nonce) — auth vno is
the resulting execution certificate that includes the version
number and nonce signed by a TPM-bound AIK.

• Init(PKG, nonce) → id: Access control on AS only
allows the group manager to execute this command,
which initializesAS to set up a new data store. AS as-
signs an id number to the new data store, and executes
the TPM command CreateCounter(pos, PKG, nonce).
Note that the second argument to CreateCounter is the
data that is bound by the TPM to this new counter,
and by setting this to be the group G’s verification key
PKG, we bind that verification key to the counter in
a strong, TPM-enforced way.

• GetVersion(id, nonce) → (auth vno,m, σ): This com-
mand provides the current version number and data
identified by id, in a way that can be authenticated
as authorized and fresh. In particular, σ is a valid
signature on m (i.e., GV erify(PKG,m, σ) accepts),
and the version number in m is attested to by the
TPM as current by executing TPM command Read-

Counter(id, nonce) and returning the AIK-signed exe-
cution certificate as auth vno (along with m and σ).

• GetCurrNextVersion(id, nonce)→ (auth vno,m, σ, nv):
This is the similar to GetVersion, but sets an exclusive
lock for this client for id (if some other client holds a
lock on id, this operation fails), and returns the next
available version number nv in addition to the attested
current version number.

• ReleaseLock(id): This releases the lock that this client
holds on id, and is used when the protocol must be
aborted (e.g., due to a failure with SS).

• UpdateVersion(id,m, σ, nonce)→ auth vno: First, AS
first checks to make sure that this client holds the up-
date lock for this id, with the same “new version num-
ber”that is inm, and then retrieves the data associated
with counter id (which was set in Init to be the verifica-
tion key PKG, and retained as this value on all subse-
quent operations). AS then runsGV erify(PKG,m, σ)
to verify that this update is coming from an authorized
group member. If these tests succeed, AS executes
TPM command IncrementCounter(id, PKG, nonce) and
returns the AIK-signed execution certificate showing
the new version number. Whether successful or not,
in any case, AS invalidates the update lock held by
this client for id.

There are a few important things to note about the ser-
vices provided by AS. First, since GM initializes the system
by associating PKG with the virtual monotonic counter id,
and the only change to this counter is through UpdateVer-

sion which keeps the same data PKG, this binds the autho-
rized group strongly to this counter, and only updates which
are accompanied by a signature that verifies with this key
are accepted.1 Note that the clients do not have to trust
AS on this point, since the counter-associated data PKG

is part of the signed execution certificate (auth vno) that
accompanies all responses to client requests — clients could
immediately tell if this public verification key were changed
by a malicious AS. Another important thing to notice is the
use of the exclusive update lock: This allows the full update,
including interaction with SS, to be atomic and sequenced
with other requests from other concurrent clients. This lock
should have some timeout value so that a client that fails
before completing the update operation would not lock up
the system (if a slow client responds after the timeout, the
only consequence would be that the UpdateVersion operation
fails).

3.4.2 SS: The Storage Server
The storage server SS is primarily an implementation of

a basic single-client DPDP scheme, with the addition of ver-
sion numbers and locks to handle concurrency and consis-
tency issues. Due to page limitations we do not go into
details here, but will instead focus on how SS is modified
to address problems that are unique to the multi-client set-
ting. Our two significant changes include the use of version
numbers and the addition of an update lock.
Version numbers form a monotonically increasing sequence

of values, and each time the data is updated a new version
number is assigned. The server retains old versions for some
amount of time, but may only update the most recent ver-
sion, similar to partially persistent data structures [14]. Ev-
ery client request to SS must contain a version number, but
otherwise looks like a standard DPDP request. While the
source of the version numbers is not relevant for the func-
tioning of SS, we note here that our full protocol retrieves
version numbers from AS, which in turn gets them from
virtual monotonic counters managed by its TPM.
Since the requests to SS are coming through a single

monotonic source, the requests should, for the most part,
be monotonically sequenced. It is still possible for SS to
receive out-of-sequence requests due to some clients being
slower than others, and we keep old versions for some time
so that slow clients are not indefinitely delayed due to failed
requests. We discuss more fully how concurrency and con-
sistency issues are resolved in Section 3.5, after the full pro-
tocol is defined. As far as SS is concerned, its behavior
is controlled by the system parameter accom time (or “ac-
commodation time”), which could be mutually agreed upon
when the group manager sets up service with SS. Version
numbers are managed by keeping track of the highest ver-
sion number seen so far in a request (curr vno) and a set
old vno deaths that stores, for each old version number, a
“time of death” after which requests for that version will no
longer be answered. To update these values, when the server
receives the first request for a new version number, beyond

1For key management purposes, it might be good to have a
“change key” command that GM could execute, but this is a
simple extension that we leave out of our current discussion.

curr vno, it puts curr vno in the old vno deaths sets with
a “time of death” set to the current time plus accom time,
and then curr vno is updated with the newly-received ver-
sion number. Therefore, slow clients have the amount of
time specified by accom time to get read requests in before
the old version dies. Note that curr vno is not updated
when the DPDP operation PerformUpdate is performed —
rather it is the next request from a client that contains the
new version number that triggers the update. This is an
important point which will be explained more fully in Sec-
tion 3.5.

SS is also enhanced from a single-client DPDP server by
the inclusion of update locking. When a data object is ini-
tially created on SS, the public key of the authorized modi-
fier group is stored on the server, and lock requests must be
signed to show that they came from an authorized user. In
particular, at the beginning of an update the client requests
an exclusive update lock using both the current version num-
ber and the next version number. Each lock request must
be signed by the client identifying it as a member of an au-
thorized group. If the signature verifies, SS allows the client
to proceed with the update. Unlike read requests, there is
no accommodation time for update requests, so the version
number must match curr vno and there must be no other
client locking that version in order for the request to suc-
ceed. To protect against clients that fail, a system parame-
ter lock timeout determines how long the lock will be held
before the lock is released and the overdue PerformUpdate

request will not be accepted.

3.4.3 Complete Multi-User DPDP Protocol
In this section we describe how the client works with AS

and SS in the complete multi-user DPDP protocol. First
we present the protocol for authenticated data retrieval.

Retrieve protocol for user u:

1. Get Version Number: u generates a random nonce

and executes GetVersion(id, nonce) with AS to get the
current, fresh version number vno of the data object,
and signature σ over a tuple m = (vno,Mc), where Mc

is in the form of metadata from the underlying DPDP
system. u verifies the TPM-based freshness attestation
on vno, checks that the version number in the freshness
attestation matches the version number in the signed
tuple, and computes GV erify(PKG,m, σ) to verify
that Mc was authenticated by an authorized modifier
(i.e., member of G).

2. Get Data: u and SS execute Challenge and Prove us-
ing version number vno, and u verifies the result using
Verify and metadata Mc from the previous step. If all
verifications succeed, u is assured that it has retrieved
authentic data.

Next, we give the protocol for a user to update part or all
of the stored data.

Update protocol for user u:

1. Get Version Numbers: u picks a random nonce and
executes GetCurrNextVersion(id, nonce) withAS to get
current version number vno and next version number
nv, and an exclusive update lock registered with AS.
If u fails to receive the lock from AS, it delays based
on some backoff strategy and tries again. A successful
execution of GetCurrNextVersion provides a signed tu-

ple m = (cvno,Mc) containing current metadata Mc,
and is verified as it was in the retrieve protocol.

2. Perform Update: This is an interactive protocol run
between C and SS. u sendsGSign(SKG,u(cvno, nvno))
to SS to obtain an update lock. SS verifies the signa-
ture with PKG, and if verification is successful, grants
an update lock to u. Once the lock is obtained, u

can perform whatever data retrievals are necessary to
prepare its update using cvno,2 and then use Prepare-

Update to make the update request that u sends to SS.
SS then executes PerformUpdate to produce updated
metadata M ′

c and proof PM′

c
which it sends back to

u. Finally, u uses the VerifyUpdate procedure from the
DPDP scheme to check the information SS provided
— if the update information is not accepted, then u

should contact AS to release its update lock, and then
follow error-handling procedures to decide whether to
retry the update or just report an error to the user.

3. Update Version Number: If the update transaction
with SS was accepted in the previous step, then we fin-
ish the transaction by updating the metadata storage
on AS: First, u constructs the pair m = (nvno,M ′

c)
and computes σ = GSign(SKG,u,m). Then u exe-
cutes UpdateVersion(id,m, σ, nonce) with AS. If this
succeeds, AS will complete the operation, which in-
cludes releasing its update lock for this transaction.

3.5 Concurrency, Consistency, and Freshness
In this section we address issues of concurrent updates,

and show how multiple devices and users each get a consis-
tent view of the data with strong freshness guarantees. We
use the term “client” to refer to a user/device pair, so dif-
ferent clients could in fact represent the same user accessing
the service from different devices. The following example
shows the different possibilities for timing of requests from
multiple clients, where AS interaction is shown on the left
of the time-line (which goes down), and SS interaction is
shown on the right. Clients are identified as c1, c2, and so
on, and requests are abbreviated for compactness (e.g., GCV
is for GetCurrentVersion, UpV is for UpdateVersion, etc.).

c1 GCV v4

c3 GCV v4

c4 GCV v4

c5 GCV v4

c1 GCV v5

c6 GCV v5

c2 GCNV (v4,v5)

c2 UpV v5

c2 lock (v4,v5)

c1 read v4

c3 read v4

c1 read v5 (updates curr_vno)

c6 read v5

c4 read v4

c5 read v4 (fails)

c2 update to v5

a
c
c
o

m
_
ti
m

e

AS Requests SS Requests

We consider a few interesting scenarios below that could
potentially involve race conditions when there is an overlap

2Note that the authenticated version number provides a re-
liable way of validating data cached for added efficiency.

between clients who try to read/update the data store at
the same time. We do not consider clients whose read-only
requests overlap with each other, or clients whose update
requests do not overlap with other requests, since those are
straightforward cases. In the diagram, client c2 is updating
the data store, while all other clients are reading data.

Overlapping read/update requests: Client c1 places a
request which starts before any c2 operations, and so will
complete its operation with the version that was current
when c1 made its request to AS (assuming it does so in
time — see “slow clients” below for the alternative). c3 and
c4 both start read requests by getting the initial version
number (v4) fromAS, and succeed with this version number
despite the fact that c2 performs the update operation on SS
before they issue the read request to SS. In our protocol, the
current version number tracked by SS is not updated until a
read request comes in with a new version number. The point
of this is to guarantee that the version number on AS has
been updated, without requiring any interaction between
SS and AS. Therefore when c3’s read request is made to
SS, it proceeds as if there had been no update operation on
SS. For c4, there is indeed a new version on SS, but the
previous version is returned because the read request comes
before the accommodation time for old versions expires.

Overlapping update requests: Update locks on SS and
AS are granted exclusively to an authorized, requesting
client for up until a maximum time limit (to prevent starva-
tion), so it is not possible for two or more legitimate updates
that correctly follow our protocol to overlap. Since lock re-
quests are signed, it is impossible for an unauthorized user
to be granted a lock and start an update sequence, so over-
lapping with unauthorized users is also not a possibility.

Slow clients: When c1’s read request comes through for
version v5, curr vno is updated on SS and the accommoda-
tion time clock is started. At that point we have two clients
who have not completed their read requests, with c5 being
a particularly slow client that does not complete its read
request until after the accommodation time expires. There-
fore, c5’s request fails, which is the only possible action in a
system that enforces freshness. A slow client performing an
update proceeds analogously, with the requirement that it
must complete its update before the locks time out. While
this isn’t strictly necessary to enforce freshness, some form
of lock timeout is necessary to recover from client failures.
If handling slow client updates becomes a problem, either
the lock timeout can be increased or the client could be al-
lowed to complete its update operation if no other client has
requested and captured the update lock.

3.6 Group Implementations
In this section we describe two ways of implementing the

digital signature group membership verification service, with
slightly different properties.

Using a Group Signatures Scheme: Group signature
schemes are ideally suited to the system we have described.
We consider the group signature scheme due to Ateniese et
al. [2] — due to the tight correspondence between group
signature operations and our required operations of GSign

and GV erify, we do not provide extensive details here. For
readers unfamiliar with group signature schemes, we refer
them to the Ateniese et al. paper for further information.

When a group signature scheme is set up by a group man-
ager, the manager receives both a secret group manager key
SKGM and a group public key PKG, and can use these val-
ues to admit individual users to the group through a Join

operation. On admission, each member u receives a secret
signing key SKG,u. This maps quite directly to the defini-
tions of GSign and GV erify that we require, so a group
signature scheme is a natural fit for our protocol.
A group signature scheme provides several additional prop-

erties that are not necessary in the way we have defined our
multi-user DPDP scheme, but might be useful in some situ-
ations. In particular, group signature schemes are designed
so that signatures from different members of a group are
indistinguishable without knowledge of a special secret or
trapdoor. In our setting, this means that the data store
could be updated so that anyone can verify that the update
was made by a legitimate group member, but without addi-
tional information it would be infeasible to tell which group
member made the update. Signature schemes provide vari-
ous methods to Open a signature and determine who created
a particular signature, but typically only the group manager
or some other specially-designated user can do that. This
property might be useful in situations where sensitive data
is stored on a shared storage server, and tracking that infor-
mation back to an individual user is undesirable.

Using a Standard Signatures Scheme and Certifi-
cates: Standard digital signature schemes such as RSA
have been studied far more extensively than group signa-
ture schemes, so it might be desirable to rely on standard
signatures when the stronger group anonymity properties of
group signatures are not needed. In this case, the group
manager serves as a certification authority (CA) and is-
sues group-membership certificates to individual users to
link their individual public verification keys to the group.
Mapping to our requirements, every signature σ produced

by GSign will include not only the user-produced RSA sig-
nature, but also a copy of the signing party’s group mem-
bership certificate. The group public key PKG is simply
the verification key for certificates issued by the group man-
ager, and the GV erify operation checks the validity of the
group membership certificate and the RSA signature, both
of which are present in signature σ. This is a straightfor-
ward scheme the satisfies the requirements of our protocols,
albeit without any additional anonymity properties.

4. HIERARCHICAL STORAGE
In this section, we extend the single-object DPDP proto-

col of Section 3 to a multi-object protocol, where the users
update shared objects stored in a filesystem hierarchy. We
could, of course, directly use the solution of the previous
section where we treat each filesystem object (both files and
directories) as a separate, protected data store, each with
its own virtual monotonic counter and metadata, but that
does not take advantage of savings that are possible due to
the hierarchical structure of the filesystem.
Let client groups create files/directories (henceforth re-

ferred to as objects) on SS, and set permission levels for
those objects by assigning each object a label ℓ, indicating
whether the object has the same set of authorized modifiers
as its parent. In typical filesystems, most objects will inherit
the set of authorized modifiers from its parent, and in that
case ℓ is set to“inherit”; otherwise, ℓ is set to“control point”,

.....

.....

.....

.....

/

tmp usr varbin etc home

user1 user2 user196 user499 user500.

personal projects workclasses

thesiskillerapp

ui.c opt.c

Group: {SysAdmin}
Control Point Auth

Group: {user196,user2,user43}
Control Point Auth

Group: {user196}
Control Point Auth

Figure 1: Sample file hierarchy with control points
shaded grey, and three control points

and the object is designated as a control point. Authentica-
tion data is either signed or propagated up through“inherit”
links to a signed directory, where we minimize the use of ex-
pensive signatures through inherit labels. An example of
such a structure is illustrated in Figure 1.

In Figure 1, the system root directory is designated as
a control point, users’ home directories are designated as
control points as well, since they are exclusively controlled
by each user. The contents of each user’s home directory
is under the exclusive control of that user, but a user can
assign read/write privileges selectively to other users if they
so wish. In our example, user196 can allow a workgroup
permission to modify a collaborative project directory, such
as killerapp/ in the figure. Since killerapp/ does not
inherit the exclusive permissions of its parent directory, it is
designated as a control point.

We now describe protocols for retrieving (reading) an ob-
ject and updating (writing) to an object.

Protocols for user u:

• Retrieve: To retrieve an object from the filesystem,
the user performs an authenticated read of that object
from the multi-user DPDP data store, which provides
the proof and metadata for that retrieve. The user
verifies the proof, and checks to see if the object is
a control point. If the object is a control point, the
user contacts AS to verify that the metadata is valid
(i.e., has a valid group signature) and fresh. Other-
wise, the verification continues recursively up the tree.
The final result of a retrieve operation is either verified
data or the special response reject indicating that the
operation failed.

• Update: Update is similar to retrieve, in that the
user first accesses and updates the object that she is
interested in — if that object is a control point, she
signs the metadata and sends it to AS to update the
current version number. If the object is not a control
point, then the user recursively updates the parent ob-
ject with the new metadata (which continues until a
control point is reached).

Referring to Figure 1 for an example, if a user196 is re-
trieving a file /home/user196/classes/exam.txt, then she
will need to do an authenticated read of the file exam.txt,
which produces metadata Mc1 for that file. Since exam.txt

is not a control point, there is no verification for Mc1 on AS,
but Mc1 should be embedded in the classes directory ob-
ject, so we do an authenticated read of that directory infor-
mation which returns a proof and metadata for the classes
directory, which we will call Mc2. However, since classes

is also not a control point, we cannot verify Mc2 directly, so
do an authenticated retrieve of the metadata Mc2 from the
user196 home directory, which returns the home directory
metadataMc3. This is a control point, so we verify thatMc3

is the current value for user196 control point using AS, and
verification of this metadata authenticates all of the accesses
below it, inductively authenticating the file exam.txt.
An update to exam.txt would work similarly to this, but

performing updates along the path to the control point rather
than just verifications.
The main difference between our hierarchical data storage

solution and our original multi-user DPDP solution is in the
use of control points. To make this more precise, we pro-
vide the following formal definitions of operations on control
points.

Definition 2. Hierarchical Storage

1. retrieveControlPoint((ci, object), α, Pα)→ η;
η ∈ (“accept”,“reject”): This is an interactive protocol
run between the client, AS, and SS, where the client
wishes to retrieve a control point stored on SS, and
verify its integrity and freshness. The client first con-
tacts AS to get and verify the current version number
and metadata associated with this control point, and
then challenges SS to prove possession of the control
point. The client then verifies the proof given by SS
using the meta-data obtained from AS. If the verifi-
cation succeeds, the client is assured that it received
authentic and fresh data.

2. updateControlPoint((ci, object), (ci, newObject),
SignPKG

(ci, newObject), α) → ((ci, newObject), α′):
This is an interactive protocol run between the client,
AS and SS, in which the client wishes to update a
current control point (ci, object) with (ci, newObject).
The client first gets the current version number of the
control point, and the signature over the control point
fromAS, via the GetVersionNumber protocol, and ver-
ifies them. If the verification succeeds, the client ex-
ecutes PerformUpdate with SS, where SS will prove
that it performed the update correctly. If the client
accepts the proof, it will update the version informa-
tion meta-data onAS by executing the UpdateVersion
protocol.

5. SECURITY PROPERTIES
In this section we discuss the formal security properties

of our scheme. We first give some intuition, and then move
to a few technical details, with the complete details left to
the full version of this paper [30]. Security requirements are
defined using a game between an adversary and an oracle
that plays the part of honest parties executing the protocol
under question. The standard DPDP security model, as
developed by Erway et al. [8], defines an “Adaptive Chosen

File” (or ACF) attack on the system. We use this game as a
starting point, adopting certain aspects of the POR security
game defined by Juels and Kaliski [13] and extending to
explicitly handle multiple objects and groups of users.

All colluding dishonest parties are modeled as a single ad-
versarial entity, A, which is only restricted by requiring that
attacks run in polynomial time. Since A subsumes the func-
tionality of the potentially corrupt AS, it has access to AS’s
TPM, restricted by the Trusted Platform Security Assump-
tion (so A has no access to any protected data such as secret
keys managed by the TPM). On the other side of this game,
we model all honest authorized modifiers as a“verifier”party
V, since these parties are verifying that the changes that
they make are reflected by the servers (i.e., by A). V oper-
ates as an oracle that A interacts with, maintaining secrets
for authorized users such as group signing keys, and expos-
ing an interface that includes oracle functions Oupdate and
Oretrieve that provide ways for A to request that standard
DPDP operations be initiated by V. Keeping this high-level
notation simple necessitates an unusual feature in our model:
a client performing a retrieve or update operation performs
several steps to prepare a request, perform the request by
interacting with the servers, and verify the server responses.
However, the servers are under control of the adversary, so A
must provide a “callback” interface for the oracle to interact
with the adversarially controlled servers.

The ACF game starts in a setup phase, where A interacts
with the oracle to create arbitrary files, access and modify
them, all while monitoring what V and AS’s TPM do for
these requests. At the end of the setup phase, A returns a
file identifier id for which it will try to fool the clients into
accepting a bogus version. At this point we need to define
the “good” version of file id; we use an intuitive description
here, since a more rigorous treatment (which is in the full
version of this paper) requires establishing non-trivial no-
tation. The basic idea is straightforward: if we take the
sequence of updates performed during the setup phase, and
extract just the update operations made by users who can
legitimately affect file id, then an honest execution of these
update operations produces the “good” version of the file,
which we denote as Fid.

So finally, the adversary wins this game if it can convince
Oretrieve to accept anything other than Fid. More rigor-
ously, in the game we execute the following experiment for
adversary A and multi-user DPDP scheme MDPDP, where
λ is a security parameter that determines lengths of keys
and other cryptographic properties:

Experiment Expsetup

A,MDPDP (λ)

id← AO(1λ)
f ← Oretrieve(id)
output “win” if f 6= reject and f 6= Fid

Our final security definition follows directly from this exper-
iment, saying that no polynomial time adversary can win
this game with better than negligible probability.

Definition 3. SchemeMDPDP is a secure multi-user DPDP
scheme for hierarchical storage if, for any polynomial time
adversary A and any c ≥ 1, there exists a λ0 > 0 so that for
all λ ≥ λ0,

Prob
[

Expsetup

A,MDPDP (λ) =“win”
]

<
1

λc
.

The full theoretical analysis of the MDPDP scheme pre-
sented in this paper is beyond the scope of this conference
paper. Details are provided in the full paper showing that
our scheme is a secure multi-user DPDP scheme under this
definition.

6. EXPERIMENTS
In this section, we present preliminary results of experi-

ments into the practicality of the system we have described
in this paper. The experiments in this paper are not in-
tended to be an extensive performance evaluation, but are
meant as a preliminary exploration of the feasibility of our
approach. As mentioned earlier, prior work has provided ex-
tensive comparisons of the log-based and the hash tree-based
virtual monotonic counter schemes [29], so we concentrate
here on the more efficient hash tree-based scheme.
The storage server SS is a modified DPDP server, and

performance is consistent with the experiments performed
by Erway et al. [8] so we do not report those results here.
Instead, we focus on our main innovation, the TPM-based
authentication server AS, which is also the main bottleneck
of the system due to speed limitations of the TPM.
Since our system requires modest extensions of a standard

TPM, we could not perform our tests on TPM hardware, but
instead use the timing-accurate TPM simulator of Gunupudi
and Tate [12]. We use a timing profile of an Infineon TPM,
which provides the fastest RSA signature time (308.88ms)
of any TPM model, and perform tests on a server with an
Intel Xeon X3353 processor and CPU-based computations
written in Java and run under the IcedTea6 1.6 JVM. The
TPM simulator supports plugins for TPM extensions, and
we created a hashtree plugin to provide virtual monotonic
counters using the techniques described in Section 3.
In this test setting, doing a single isolated virtual mono-

tonic counter attestation, complete with server processing
and setting up the authenticated command, takes 425ms;
therefore, the maximum request throughput that could be
achieved by directly applying the techniques of Sarmenta et
al. [25] is approximately 2.35 requests per second.
Using our technique of batched attestation (described in

Section 3.3.2), we achieve dramatically higher throughput
rates, suitable for many practical applications. We tested
multiple batch sizes, starting at 400 requests and going up
to 2800 requests in steps of 400, running 50 tests at each size
and computing the average time, giving the results below.

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000

B
at

ch
 T

im
e

(m
s)

Batch Size

The times were very consistent, varying by at most 10%

around the average over the 50 runs. The batch times show a
linear increase as the batch size increases, which is expected
since building the nonce hash tree and creating attestation
responses are both linear time operations in the batch size.

To optimize our use of resources, we balance time of CPU
time with the TPM time, as that keeps both computational
resources at full utilization. Specifically, while a TPM re-
quest is outstanding, we are using the CPU to post-process
the results of the previous TPM operation and construct
the nonce tree for the next TPM request. If these times
are balanced, we complete construction of the nonce tree at
the same time the previous TPM request finishes, so we are
immediately ready to issue the next command to the TPM.
The TPM time is a constant 425ms regardless of batch size,
and so TPM and CPU time are balanced when the total
time is twice this, or 850ms. Zooming in on our graph, we
see that this happens with a batch size of approximately
1975 requests. At that size, we process 1975 requests every
425 ms, giving an optimized throughput of 4647 requests per
second. This is a dramatic improvement, with a throughput
around 2000 times greater than the base rate of 2.35 requests
per second. This is fast enough to satisfy even some very
demanding applications.

7. CONCLUSION AND FUTURE WORK
Using lightweight trusted hardware on a remote storage

server, we extend previous work in the area of dynamic prov-
able data possession (DPDP) and construct DPDP protocols
for the setting where multiple collaborative users work on re-
motely stored shared data. Our constructions provide proofs
of integrity, freshness, and when used to implement a hierar-
chical filesystem they authenticate both the data itself and
its place in the filesystem. A new method of batching attes-
tations provides throughput for multiple attestations that
is several orders of magnitude greater than the straightfor-
ward solution, bringing this well into the range of practical
application.

In ongoing work, we are further developing the theoretical
security model and performing more extensive performance
evaluation. A practically relevant direction for future work
would be to explore the idea of load-balancing across multi-
ple servers. With respect to our model, it should be straight-
forward to distribute the storage server across multiple ma-
chines for load-balancing client requests, but it is harder to
distribute the authentication server tasks since our current
protocols depend on the the TPM and virtual monotonic
counter being globally unique for each control point. One
possible solution is to distribute control points to different
ASes; however, it’s not clear how to duplicate resources for
an individual control point, and so distributing in this man-
ner simply creates multiple points of failure when validating
a path in the filesystem, making the system more brittle. We
leave the search for a better solution as an open problem.

8. ACKNOWLEDGMENTS
The work reported in this paper is supported by the Na-

tional Science Foundation under Grant No. 0915735. The
authors would like to thank Adam Lee and the anonymous
reviewers for their helpful comments.

9. REFERENCES

[1] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring,
L. Kissner, Z. N. J. Peterson, and D. X. Song. Provable
data possession at untrusted stores. In ACM CCS,
pages 598–609, 2007.

[2] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A
practical and provably secure coalition resistant group
signature scheme. In CRYPTO, pages 255–270, 2000.

[3] G. Ateniese, R. D. Pietro, L. V. Mancini, and
G. Tsudik. Scalable and efficient provable data
possession. In SecureComm, 2008. Article 9.

[4] K. D. Bowers, A. Juels, and A. Oprea. Hail: a
high-availability and integrity layer for cloud storage. In
ACM CCS, pages 187–198, 2009.

[5] C. Cachin. Integrity and consistency for untrusted
services. In SOFSEM, pages 1–14, 2011.

[6] C. Cachin, I. Keidar, and A. Shraer. Fail-aware
untrusted storage. In DSN, pages 494–503, 2009.

[7] B.-G. Chun, P. Maniatis, S. Shenker, and
J. Kubiatowicz. Attested append-only memory: making
adversaries stick to their word. In SOSP, pages
189–204, 2007.

[8] C. C. Erway, A. Küpçü, C. Papamanthou, and
R. Tamassia. Dynamic provable data possession. In
ACM CCS, pages 213–222, 2009.

[9] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. SPORC: Group collaboration using untrusted
cloud resources. In OSDI, pages 337–350, 2010.

[10] J. Feng, Y. Chen, D. Summerville, W.-S. Ku, and
Z. Su. Enhancing cloud storage security against
roll-back attacks with a new fair multi-party
non-repudiation protocol. In Proc. IEEE Consumer
Communications and Networking Conference (CCNC),
pages 521–522, 2011.

[11] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Practical oblivious storage. In ACM
CODASPY, pages 13–24, 2012.

[12] V. Gunupudi and S. R. Tate. Timing-accurate TPM
simulation for what-if explorations in trusted
computing. In Proceedings of the International
Symposium on Performance Evaluation of Computer
and Telecommunicatoin Systems (SPECTS), pages
171–178, 2010.

[13] A. Juels and B. S. Kaliski, Jr. PORs: Proofs of
retrievability for large files. In ACM CCS, pages
584–597, 2007.

[14] H. Kaplan. Persistent data structures. In Handbook on
Data Structures and Applications. CRC Press, 2001.

[15] D. Levin, J. R. Douceur, J. R. Lorch, and
T. Moscibroda. TrInc: Small trusted hardware for large
distributed systems. In NSDI, pages 1–14, 2009.

[16] J. Li, M. N. Krohn, D. Mazières, and D. Shasha.
Secure untrusted data repository (SUNDR). In OSDI,
pages 121–136, 2004.

[17] J. Li and D. Mazières. Beyond one-third faulty replicas
in Byzantine fault tolerant systems. In NSDI, 2007.

[18] P. Mahajan, S. T. V. Setty, S. Lee, A. Clement,
L. Alvisi, M. Dahlin, and M. Walfish. Depot: Cloud
storage with minimal trust. In OSDI, pages 307–322,
2010.

[19] D. Mazieres and D. Shasha. Don’t trust your file

server. In Workshop on Hot Topics in Operating
Systems, pages 113–118, 2001.

[20] D. Mazières and D. Shasha. Building secure file
systems out of Byzantine storage. In ACM PODC,
pages 108–117, 2002.

[21] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D.
Gligor, and A. Perrig. TrustVisor: Efficient TCB
reduction and attestation. In IEEE Symposium on
Security and Privacy, pages 143–158, 2010.

[22] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for
TCB minimization. In EuroSys, pages 315–328, 2008.

[23] R. C. Merkle. A digital signature based on a
conventional encryption function. In CRYPTO, pages
369–378, 1987.

[24] T. Moyer, K. Butler, J. Schiffman, P. McDaniel, and
T. Jaeger. Scalable web content attestation. In ACSAC,
pages 95–104, 2009.

[25] L. F. G. Sarmenta, M. v. Dijk, C. W. O’Donnell,
J. Rhodes, and S. Devadas. Virtual monotonic counters
and count-limited objects using a TPM without a
trusted OS. In Proceedings of the First ACM Workshop
on Scalable Trusted Computing, pages 27–42, 2006.

[26] H. Shacham and B. Waters. Compact proofs of
retrievability. In ASIACRYPT, pages 90–107, 2008.

[27] A. Shraer, C. Cachin, A. Cidon, I. Keidar,
Y. Michalevsky, and D. Shaket. Venus: verification for
untrusted cloud storage. In CCSW, pages 19–30, 2010.

[28] E. Stefanov, M. van Dijk, A. Oprea, and A. Juels. Iris:
A scalable cloud file system with efficient integrity
checks. IACR Cryptology ePrint Archive, 2011, 2011.

[29] S. R. Tate and R. Vishwanathan. Performance
evaluation of TPM-based digital wallets. In
International Symposium on Performance Evaluation of
Computer and Telecommunication Systems, pages
179–186, 2010.

[30] S. R. Tate, R. Vishwanathan, and L. Everhart.
Multi-user dynamic proofs of data possession using
trusted hardware – expanded version. Available at
http://span.uncg.edu/pubs, 2012.

[31] Trusted Computing Group. Trusted Platform Module
Specifications – Parts 1–3. Available at
https://www.trustedcomputinggroup.org/specs/TPM/.

[32] M. van Dijk, J. Rhodes, L. F. G. Sarmenta, and
S. Devadas. Offline untrusted storage with immediate
detection of forking and replay attacks. In Workshop on
Scalable Trusted Computing, pages 41–48, 2007.

[33] M. van Dijk, L. Sarmenta, C. O’Donnell, and
S. Devadas. Proof of freshness: How to efficiently use
an online single secure clock to secure shared untrusted
memory. Technical Report CSG Memo 496, MIT, 2006.

[34] H. Xiong, X. Zhang, D. Yao, X. Wu, and Y. Wen.
Towards end-to-end secure content storage and delivery
with public cloud. In ACM CODASPY, pages 257–266,
2012.

[35] Q. Zheng and S. Xu. Fair and dynamic proofs of
retrievability. In ACM CODASPY, pages 237–248,
2011.

