Categorical Data Analysis I: Associations with nominal and ordinal data

Contents

1. Nominal-nominal association
1.1. Estimating a population proportion based on a single sample
1.2. Comparing two proportions-independent samples
1.2.1. Confidence intervals
1.2.2. Hypothesis tests
1.3. Chi-squared test
1.3.1. $2 x 2$ tables
1.3.2. More than two rows or columns
1.4. Measures of association
2. Nominal-ordinal association
2.1. Comparing groups-independent samples
2.2. Measures of association
3. Ordinal-ordinal association
4. Comparing dependent proportions

1. Nominal/nominal association

A randomized clinical trial was conducted to estimate incidence of HPV and assess the effectiveness of the HPV 16 vaccine. 414 subjects aged $15-25$ were assigned to receive the vaccine, while a control group of 385 did not receive the vaccine. The table below indicates the number in each group that acquired HPV infection during the study period.

Group	Infection	
	No	Yes
Control	366	19
Vaccine	413	1

Question 1: What is the incidence of HPV in each group?
Question 2: Is the incidence of HPV lower in the vaccine group?

1.1. Estimating a population proportion based on a single sample.

Binomial experiment:
o Series of identical, independent "trials" (Observe subject throughout the study period)
o Each trial results in one of two possible outcomes (Acquires HPV or does not)
o Count the number of "successes" (number that acquire HPV)
o Interest is in the proportion of successes (proportion that acquire HPV)

95\% Confidence interval for population proportion
Basic form of the interval: sample estimate +/- margin of error

Wald interval ("textbook" interval)
Sample estimate: $\hat{p}=\frac{\# \text { successes }}{n}$; margin of error: $1.96 * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Works "OK" for large samples
population proportion not close to 0 or 1
suffers from bias and undercoverage otherwise
bias: systematically lower or higher than population proportion
undercoverage: Actual confidence level less
than 95% (intervals tend to be too narrow)

Agresti-Coull interval (new and improved "textbook" interval)
Helps to "fix" problems with the Wald interval—add 2 successes and 2 failures

$$
\text { Sample estimate: } \tilde{p}=\frac{\# \text { successes }+2}{n+4} ; \text { margin of error: } 1.96 * \sqrt{\frac{\tilde{p}(1-\tilde{p})}{n}}
$$

Works better for smaller samples, population proportions close to 0 or 1

Score interval ("Ideal" interval, but more complicated-doesn’t appear in most textbooks)
HPV example

		95\% confidence interval	
Group	Method	Lower limit	Upper limit
Control	Wald	0.0292	0.0695
	Agresti-Coull	0.0315	0.0764
	Score	0.0318	0.0757
Vaccine	Wald	-0.0023	0.00714
	Agresti-Coull	-0.0009	0.01526
	Score	0.0004	0.01355

JMP

R

Control group:
\#Wald
19/385-1.96*sqrt(19/385*366/414/414)
\#\# [1] 0.02922997
19/385+1.96*sqrt (19/385*366/414/414)
\#\# [1] 0.06947133
\#AC
21/389-1.96*sqrt (21/389*368/389/389)
\#\# [1] 0.03152688
21/389+1.96*sqrt(21/389*368/389/389)
\#\# [1] 0.07644227
\#Score
prop.test(19, 385, correct=F)

```
##
## 1-sample proportions test without continuity correction
##
## data: 19 out of 385, null probability 0.5
## X-squared = 312.75, df = 1, p-value < 2.2e-16
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.03181847 0.07578697
## sample estimates:
## p
## 0.04935065
Vaccine group
#Vaccine
#Wald
1/414-1.96*sqrt(1/414*412/414/414)
## [1] -0.002307391
1/414+1.96*sqrt(1/414*412/414/414)
## [1] 0.007138309
#AC
3/418-1.96*sqrt(3/418*414/418/418)
## [1] -0.0009055918
3/418+1.96*sqrt(3/418*414/418/418)
## [1] 0.01525966
#Score
prop.test(1,414, correct=F)
##
## 1-sample proportions test without continuity correction
##
## data: 1 out of 414, null probability 0.5
## X-squared = 410.01, df = 1, p-value < 2.2e-16
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.0004265151 0.0135535692
## sample estimates:
## p
## 0.002415459
```

```
data gibbs;
input Group$ HPV$ count @@;
datalines;
Control Yes 19 Control No 366
Vaccine Yes 1 Vaccine No 413
;
proc freq data=gibbs;
weight count;
tables HPV /
    binomial (level='Yes' CL=all) /*Request confidence
        intervals for proportion 'Yes'*/;
by Group;
run;
```

Group=Control

HPV Frequency	Percent Cumulative Cumulative			
No	366	95.06	366	95.06
Yes	19	4.94	385	100.00

Binomial Proportion	
HPV $=$ Yes	
Proportion	0.0494
ASE	0.0110

Type	95% Confidence Limits	
Wald	0.0277	0.0710
Wilson	0.0318	0.0758
Agresti-Coull	0.0314	0.0762

Group=Vaccine

HPV Frequency	Percent	Cumulative Cumulative		
Frequency	Percent			
No	413	99.76	413	99.76
Yes	1	0.24	414	100.00

Binomial Proportion	
HPV $=$ Yes	
Proportion	0.0024
ASE	0.0024

Type	95% Confidence Limits	
Wald	0.0000	0.0071
Wilson	0.0004	0.0136
Agresti-Coull	0.0000	0.0150

1.2 Comparing two proportions-independent samples

Proportion difference-interpretation depends on incidence rates
Risk ratio (relative risk)—may not be valid for retrospective studies
Odds ratio-most obscure for practitioners

HPV example

Comparison	Estimate	Interpretation
Control--Vaccine	$\frac{19}{385}-\frac{1}{414}=0.04935-0.00242=0.047$	Incidence of HPV higher in Control group by 4.7\%
$\frac{\text { Incidence }(H P V) \text { [Control] }}{\text { Incidence }(H P V) \text { [Vaccine] }}$	$\frac{19}{385} / \frac{1}{414}=\frac{0.04935}{0.00242}=20.4$	Incidence of HPV in Control group 20.4 times higher
$\frac{\text { Odds }(H P V)[\text { Control] }}{\text { Odds }(H P V)[\text { Vaccine] }}$	$\frac{19}{366} / \frac{1}{413}=\frac{0.04935}{0.00242}=21.4$	Odds of HPV in Control group 21.4 times higher

1.2.1 Confidence intervals

Proportion difference
Wald interval
Sample estimate: $\hat{p}_{1}-\hat{p}_{2} ; \quad$ margin of error: $1.96 * \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$
Similar issues as in the one-sample case

Agresti-Caffo interval
Add 1 success and 1 failure to each group

Use $\tilde{p}_{i}=\frac{\# \text { successes }+1}{n+2}$ instead of \hat{p}_{i}

Risk ratio (relative risk) and odds ratio
Inference usually based on \ln (ratio) and using Wald interval

JMP

(9) e

SAS

```
proc freq data=gibbs;
weight count;
tables Group*HPV /
    riskdiff (Column=2 CL=Wald CL=AC)/*Estimate difference
        between proportions*/
    relrisk /*Estimate relative risk and odds ratio*/;
run;
```

Column 2 Risk Estimates
Risk ASE (Asymptotic) 95\% (Exact) 95\% Confidence Limits Confidence Limits
$\begin{array}{llllll}\text { Row } 1 & 0.0494 & 0.0110 & 0.0277 & 0.0710 & 0.0300\end{array} 0.0760$
Row $2 \quad 0.00240 .00240 .0000 \quad 0.0071 \quad 0.0001 \quad 0.0134$
$\begin{array}{lllllll}\text { Total } & 0.0250 & 0.0055 & 0.0142 & 0.0359 & 0.0154 & 0.0384\end{array}$
Difference 0.04690 .01130 .02480 .0691
Difference is (Row 1 - Row 2)

Confidence Limits for the Proportion (Risk) Difference		
Column 2 (HPV = Yes)		
Proportion Difference $=0.0469$		
Type	95\% Co	dence Li
Agresti-Caffo	0.0238	0.0699
Wald	0.0248	0.0691

Estimates of the Relative Risk (Row1/Row2)			
Type of Study	Value	95\% Confidence Limits	
Case-Control (Odds Ratio)	0.0466	0.0062	0.3501
Cohort (Col1 Risk)	0.9530	0.9311	0.9754
Cohort (Col2 Risk)	20.4312	2.9483	151.8888

R

Confidence interval for proportion difference

```
prop.test(x=c(19, 1), n=c(385,414), correct=F)
##
## 2-sample test for equality of proportions without continuity
## correction
##
## data: c(19, 1) out of c(385, 414)
## X-squared = 18.007, df = 1, p-value = 2.201e-05
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.02478865 0.06908174
## sample estimates:
## prop 1 prop 2
## 0.049350649 0.002415459
```

boiale
Ele [at yew Data Iranstorm snajpe graphs Custom ywites ass-gns yindow Help

Data Vew varuse hew
(P) C

T2 HPV.ser [Detasel3]- Hem Spss Scotitios Dota Editer

Risk Estimate

	Value	95\% Confidence Interval	
		Lower	Upper
Odds Ratio for Group (Control / Vaccine)	. 047	. 006	. 350
For cohort HPV = No	. 953	. 931	. 975
For cohort HPV = Yes	20.431	2.748	151.889

1.2.2 Hypothesis tests

HPV example. Suppose the research hypothesis is that the vaccine reduces the incidence rate. Then we wish to test one of three sets of equivalent hypotheses:

1. $H_{0}: \pi_{V}=\pi_{C}$ vs. $H_{A}: \pi_{V}<\pi_{C}$,
2. $H_{0}: \frac{\pi_{V}}{\pi_{C}}=1 \underset{\text { vs. }}{H_{A}}: \frac{\pi_{V}}{\pi_{C}}<1$, or
3. $H_{0}: \frac{O d d s(H P V)_{V}}{\operatorname{Odds}(H P V)_{C}}=1 \quad H_{A}: \frac{O d d s(H P V)_{V}}{O d d s(H P V)_{C}}<1$

Test statistic 1-- $Z=\frac{\hat{\pi}_{V}-\hat{\pi}_{C}}{S E\left(\hat{\pi}_{V}-\hat{\pi}_{C}\right)}, \operatorname{SE}\left(\hat{\pi}_{V}-\hat{\pi}_{C}\right)=\sqrt{\frac{\pi(1-\pi)}{n_{1}}+\frac{\pi(1-\pi)}{n_{2}}} . \pi$ is the common true incidence rate under the null hypothesis and is estimated by computing the combined sample incidence rate over both groups, $\hat{\pi}=\frac{\text { total number of HPV cases }}{n_{1}+n_{2}}=\frac{19+1}{385+414}=0.025$. Then the test statistic value is $Z=\frac{\frac{1}{414}-\frac{19}{385}}{\sqrt{\frac{0.025(0.975)}{414}+\frac{0.025(0.975)}{385}}}=-4.243$, with corresponding pvalue less than 0.0001 .

R is the only software that produced a test statistic (X -squared $=\mathrm{Z}^{2}$) and p -value, although JMP also showed the p-value. However, as we will see, the p-value can be calculated by all software using a chi-squared test.

R

```
p-value for proportion difference
prop.test(x=c(19, 1), n=c(385,414), correct=F, alternative="greater")
##
## 2-sample test for equality of proportions without continuity
## correction
##
```

```
## data: c(19, 1) out of c(385, 414)
## X-squared = 18.007, df = 1, p-value = 1.101e-05
## alternative hypothesis: greater
## 95 percent confidence interval:
## 0.02834922 1.00000000
## sample estimates:
## prop 1 prop 2
## 0.049350649 0.002415459
```

JMP

1.3. Chi-squared test

Generalizes the Z-test to

1. 2 or more groups,
2. outcomes with 2 or more categories

1.3.1. 2×2 table

Compares the observed table with what would be expected if the probabilities were the same:
Observed table:

Group	Infection		
	No	Yes	Total
Control	366	19	385
Vaccine	413	1	414
Total	779	20	799

Expected table:

Group	Infection	
	No	Yes
Control	$385 * 779 / 799=375.36$	$385^{* 20 / 799}=9.64$
Vaccine	$414 * 779 / 799=403.64$	$414 * 20 / 799=10.36$

(Pearson) chi-squared test statistic is the sum across all cells in the table, of $\frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$. For the HPV example, the value of the test statistic is $X^{2}=18.007$ (this was the value given by the R output above). The p-value is usually based on the chi-squared distribution. All software packages will compute this statistic and corresponding p-value.

SAS

```
proc freq data=gibbs;
weight count;
tables Group*HPV /
    chisq /*chi-squared test*/;
run;
```

Statistic	DF Value \quad Prob		
Chi-Square	1	18.0068	$<.0001$
Likelihood Ratio Chi-Square	1	21.5699	$<.0001$
Continuity Adj. Chi-Square	1	16.1350	$<.0001$
Mantel-Haenszel Chi-Square	1	17.9843	$<.0001$
Phi Coefficient		-0.1501	
Contingency Coefficient		0.1485	
Cramer's V		-0.1501	

SPSS

Chi-Square Tests

			Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Value	df	18.007^{a}	1	.000	
Pearson Chi-Square	16.135	1	.000		
Continuity	Correction Likelihood Ratio	21.570	1	.000	.000
Fisher's Exact Test	799			.000	
N of Valid Cases	79				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 9.64.
b. Computed only for a 2 x 2 table

1.3.2. More than 2 rows/columns

Example: Alsunni et. al (2014) studied the relationship between patient misconceptions about diabetes with several sociodemographic variables. One such variable was age group, and they obtained the following data:

Age Group	Misconception score Low			Moderate

2 Types of tests-

1. "homogeneity"-"ANOVA-type" hypothesis, where one variable represents a factor and the other a response,
2. "independence"-"correlation-type" hypothesis, where a single sample is measured on two variables

Computation is exactly the same, however.

Misconception score example.

1. Hypotheses: H_{0} : Misconception score is not associated with age
H_{A} : Misconception score is associated with age
2. Test statistic: $X^{2}=12.228$; p-value (based on chi-squared distribution with 6 df) $=$ 0.057 .

SAS

```
data alsunni_age;
input age score count @@;
datalines;
11161214132
21322228232
31563224331
41114211433
;
proc freq data=alsunni_age;
weight count;
tables treat*resp / chisq;
run;
```

Statistics for Table of age by score

Statistic	DF	Value	Prob
Chi-Square	6	12.2285	0.0571
Likelihood Ratio Chi-Square	6	11.4164	0.0763
Mantel-Haenszel Chi-Square	1	0.3005	0.5836
Phi Coefficient		0.2473	

Statistic	DF	Value Prob
Contingency Coefficient	0.2400	
Cramer's V	0.1748	
WARNING: 33\% of the cells have expected counts less than 5.		
(Asymptotic) Chi-Square may not be a valid test.		

P-value will be approximately correct if sample size is large, or more precisely if expected cell frequencies are not too small.

1. Cochran (1952): "if any expected frequency is less than 1 or if more than 20% are less than 5 , the approximation may be poor"
2. Conover (1999): "if any expected frequency is less than 0.5 or if most are less than 1 , the approximation may be poor".

Alternatives?

1. Combine columns/rows

Misconception example. Combine Moderate and High categories.

Age Group	Misconception score		
	Low	Moderate/High	Total
<20	16	16	32
$21-40$	32	30	62
$41-60$	56	25	81
>60	11	14	25
Total	115	77	200

Changes interpretation
2. Exact test
a. 2×2 table--Fisher's Exact test (usually output by default)
b. $R \times C$ table-Permutation test

HPV example--JMP

Misconception example--SAS

```
data alsunni_age;
input age score count @@;
datalines;
11161214132
21 322228232
31563224331
41114211433
;
proc freq data=alsunni_age;
weight count;
exact chisq;
tables age*score / chisq;
run;
\begin{tabular}{|lc|}
\hline Pearson Chi-Square Test \\
Chi-Square & 12.2285 \\
DF & 6 \\
Asymptotic Pr \(>\) ChiSq & 0.0571 \\
Exact \(\operatorname{Pr}>=\) ChiSq & 0.0547 \\
\hline
\end{tabular}
```

Notice that even though software printed a warning, the approximate p-value is very close to the exact p-value.

1.3. Measures of association

In the previous section a larger chi-squared statistic implied a stronger association, provided the degrees of freedom remains the same. In the Alsunni et. al (2014) example, the chi-squared statistic, with 6 df , was $X^{2}=12.23$, which corresponded to an exact p-value of 0.055 . However, for a $3 x 3$ table with 4 df , a chi-squared value of $X^{2}=12.23$ would correspond to a p-value of 0.016 . Thus, it is clear that X^{2} cannot easily be used as a measure of the degree of association across tables of different sizes. However, several measures have been proposed to do this.

Phi coefficient
For 2×2 tables, phi ranges between -1 and 1 and thus can measure "direction" of the association. For the 2 x 2 table

$$
\varphi=\frac{\begin{array}{|l|l|}
\hline a & b \\
\hline c & d \\
\hline \sqrt{(a+b)(c+d)(a+c)(b+d)}
\end{array}}{a d-b c} \begin{gathered}
a d
\end{gathered}
$$

A positive value suggests higher proportions of responses on the diagonal (cells a and d), while a negative value suggests higher proportion on the off-diagonal. Perfect positive association occurs when b and c are both 0 , while perfect negative when a and d are both 0

Cramer's contingency coefficient
Cramer's coefficient is defined as

$$
C=\sqrt{\frac{X^{2}}{n(q-1)}},
$$

where q is the smaller of the number of rows and the number of columns. The value $n(q-1)$ is the maximum possible value of X^{2} for a given set of fixed row and column totals.

HPV example

Group	Infection		
	No	Yes	Total
Control	366	19	385
Vaccine	413	1	414
Total	779	20	799

$$
\varphi=\frac{366 * 1-19 * 413}{\sqrt{(385)(414)(779)(20)}}=-0.15
$$

The negative coefficient results from the fact that a higher proportion of control patients had infections while a higher proportion in the vaccine group did not.

$$
C=\sqrt{\frac{18.0068}{799(1)}}=0.15
$$

```
proc freq data=gibbs;
weight count;
tables Group*HPV /
    chisq /*chi-squared test*/;
run;
```

Statistic	DF		Value
Chi-Square	1	18.0068	
.0001			
Likelihood Ratio Chi-Square	1	21.5699	$<.0001$
Continuity Adj. Chi-Square	1	16.1350	$<.0001$
Mantel-Haenszel Chi-Square	1	17.9843	$<.0001$
Phi Coefficient		-0.1501	
Contingency Coefficient		0.1485	
Cramer's V		-0.1501	

Alsunni et. al (2014) example.
Statistics for Table of age by score

Statistic	DF	Value	Prob
Chi-Square	6	12.2285	0.0571
Likelihood Ratio Chi-Square	6	11.4164	0.0763
Mantel-Haenszel Chi-Square	1	0.3005	0.5836
Phi Coefficient	0.2473		
Contingency Coefficient	0.2400		
Cramer's V	0.1748		
WARNING: 33\% of the cells have expected counts less than 5.			
(Asymptotic) Chi-Square may not be a valid test.			

2. Nominal/ordinal association

2.1 Comparing groups on an ordinal variable-independent samples

Rank tests for comparing groups can be used Wilcoxon rank-sum/Mann-Whitney test (2 groups) Kruskal-Wallis test (3 or more groups)

Misconception score example.
Hypotheses: $\quad H_{0}$: Misconception score is not associated with age
H_{A} : Misconception score is associated with age
Since there are 4 age groups, Kruskal-Wallis test is performed:
Test statistic: $K W=9.0896$; p-value $=0.0271$ (exact)/ 0.0281 (based on chi-squared distribution with 3 df).

Stronger evidence of association than chi-squared test (p-value $=0.0571$)

SAS

```
proc npar1way data=alsunni_age
    wilcoxon /*request WRS/MW/KW test*/;
class age;
var score;
freq count;
exact wilcoxon /*Calculate exact p-value*/;
run;
```

Wilcoxon Scores (Rank Sums) for Variable score
Classified by Variable age
age N Sum of Expected Std Dev Mean
Scores Under H0 Under H0 Score
$1 \quad 323477.003216 .00 \quad 260.357883108 .656250$
$2 \quad 626561.006231 .00 \quad 328.455463105 .822581$
$3 \quad 817140.508140 .50 \quad 348.62384788 .154321$
$4 \quad 252921.502512 .50 \quad 234.871396116 .860000$
Average scores were used for ties.

Kruskal-Wallis Test	
Chi-Square	9.0896
DF	3
Asymptotic $\operatorname{Pr}>$ Chi-Square	0.0281
Exact $\operatorname{Pr}>=$ Chi-Square	0.0271

JMP
Note: Response (Y) variable must by identified as continuous, Explanatory (X) as Nominal.

The WRS/MW/KW tests are usually thought of in the same way as T/ANOVA tests as for testing for group differences, rather than testing for association. However, the distinction only affects interpretation of test results. However, as with the X^{2} statistic, it is difficult to use these tests statistics to compare degree of association between different data sets.

3. Ordinal-ordinal association

Several rank-based methods

1. Spearman correlation-Pearson correlation on rank scores
2. Kendall's tau-measure of "concordance
(Called the Jonckheere Terpstra test if testing for group differences)
Both are measures of either increasing or decreasing (monotonic) association, range between -1 and 1, and yield similar p-values.

Misconception example.
Spearman and Kendall coefficients are -0.060 and -0.056 , respectively, with large sample pvalues 0.399 and 0.387 , respectively. Thus, there is not evidence of monotonic association between age and misconception score. That is, there is not statistical evidence that misconception score tends to increase or decrease with age.

SAS

```
proc corr data=alsunni_age spearman kendall;
var age score;
freq count;
run;
proc freq data=alsunni_age;
weight count;
exact measures jt;
tables age*score / measures jt;
run;
```

Spearman Correlation Coefficients, $\mathrm{N}=200$
Prob > |r| under H0: Rho=0

	age	score
age	1.00000	-0.05993
		0.3992
score	-0.05993	1.00000
	0.3992	

Kendall Tau b Correlation Coefficients, $\mathrm{N}=200$			
Prob > \|tau	under H0: Tau=0		
	age	score	
age	1.00000	-0.05577	
		0.3871	
score	-0.05577	1.00000	
	0.3871		

Spearman Correlation Coefficient	
Correlation (r)	-0.0599
ASE	0.0749

Spearman Correlation Coefficient	
95% Lower Conf Limit	-0.2067
95% Upper Conf Limit	0.0868

Test of H0: Correlation $=0$	
ASE under H0	0.0748
Z	-0.8012
One-sided $\mathrm{Pr}<\mathrm{Z}$	0.2115
Two-sided $\operatorname{Pr}>\|\mathrm{Z}\|$	0.4230
Exact Test	
One-sided $\operatorname{Pr}<=\mathrm{r}$	0.1994
Two-sided $\operatorname{Pr}>=\|r\|$	0.3988

Jonckheere-Terpstra Test	
Statistic (JT)	6650.5000
Z	-0.8649
Asymptotic Test	
One-sided $\operatorname{Pr}<\mathrm{Z}$	0.1936
Two-sided $\operatorname{Pr}>\|\mathrm{Z}\|$	0.3871
Exact Test	0.1941
One-sided $\operatorname{Pr}<=$ JT	0.3883
Two-sided $\operatorname{Pr}>=\mid$ JT - Mean	

JMP

Both variables need to be recognized as continuous.

We found good statistical evidence of an association using the Kruskal-Wallis test, and moderate evidence using the chi-squared test, but virtually no evidence using rank correlations.

In general,

- if one variable is ordinal and the other nominal, the WRS/MW/KW test will have more power to detect an association than the chi-squared test
- if both variables are ordinal,
o the WRS/MW/KW tests will have more power to detect an association than the chi-squared test
o the Spearman/Kendall/JT tests will have more power than the chi-squared test to detect an increasing or decreasing association, but may have less power otherwise.

Hypothetical example

Age Group	Misconception score			Total
	Low	Moderate	High	
<20	2(6\%)	14(44\%)	16(50\%)	32
21-40	6(10\%)	24(39\%)	32(52\%)	62
41-60	50(62\%)	25(31\%)	6(7\%)	81
>60	20(80\%)	4(16\%)	1(4\%)	25
Total	78	67	55	200

Now the Spearman and Kendall coefficients are -0.607 and -0.534 , respectively, with p-values less than 0.0001 .

| Spearman Correlation Coefficients, $\mathrm{N}=200$
 Prob > \|r| under H0: Rho=0 | | |
| :---: | :---: | :---: |
| | age | score |
| age | 1.00000 | -0.60660 |
| | | <. 0001 |
| score | -0.60660 | 1.00000 |
| | <. 0001 | |

| Kendall Tau b Correlation Coefficients, $\mathrm{N}=200$
 Prob > \|tau| under H0: Tau=0 | | |
| :---: | :---: | :---: |
| | age | score |
| age | 1.00000 | -0.53241 |
| | | <. 0001 |
| score | -0.53241 | 1.00000 |
| | <. 0001 | |

4. Comparing proportions-dependent samples

Mc Nemar's Test
Example. Participants are asked their preferred candidate before and after a debate. Each subject gives a response before and after:

Subject	Before	After
1	A	A
2	A	A
3	A	A
4	A	$B \downarrow$
5	A	$B \stackrel{ }{*}$
6	A	$B \leftarrow$
7	A	B^{\star}
8	A	$B \Perp$
9	A	$B \Perp$
10	A	$B \leftarrow$
11	A	$B \stackrel{ }{*}$
12	A	B^{\wedge}
13	B	A
14	B	$A \stackrel{ }{*}$
15	B	B
16	B	B
17	B	B
18	B	B
19	B	B
20	B	B

Observed Table

	A	1
	$X_{A A}$	$X_{A B}$
	$X_{B A}$	$X_{B B}$

Population Table

$P_{\cdot A}=P_{A A}+P_{B A}$
${ }^{4} P(A$ is second response $)$

If there is no effect of the debate, then A is equally likely to be chosen before and after, i.e. $P_{\cdot A}=P_{A}$.
$H_{0}: P_{\cdot A}=P_{A}$. or $P_{A A}+P_{A B}=P_{A A}+P_{B A}$ or $P_{A B}=P_{B A}$

Test Statistic: $T=X_{A B}=\#$ switched from A to B. We can consider just people who switched (The rest are "ties"). Then under H_{0} the switches to B are just as likely as to A. So, we can calculate a one-sided p-value as $P\left(X \geq X_{A B} \mid n=X_{A B}+X_{B A}, p=.5\right)$.

Example
$9+2=11$ people switched, and of those $X_{A B}=9$ switched to B.
$P(X \geq 9 \mid n=11, p=.25)=.027+.005+.000=.032$
Here the alternative is that more likely to switch to B, or $H_{a}: P_{\cdot A}<P_{A}$.

SAS

```
data ta5_8_1;
input before $ after $ count @@;
datalines;
A A 3 A B }
B A 2 B B }
;
proc freq data=ta5_8_1;
weight count;
exact mcnem; /* Requests McNemar test, exact p-value */
tables before*after;
run;
```

Statistics for Table of before by after

McNemar's Test	
Statistic (S)	4.4545
DF	1
Asymptotic $\operatorname{Pr}>$ S	0.0348
Exact $\operatorname{Pr}>=$ S	0.0654

```
R
table <- matrix(
c(3, 9,
2, 6),
nrow = 2, byrow = TRUE,
dimnames = list(
"First" = c("A", "B"),
"Second" = c("A", "B")
)
)
library(coin)
## Loading required package: survival
##
## Attaching package: 'survival'
## The following object is masked from 'package:epitools':
##
## ratetable
mh_test(as.table(table), distribution = "exact")
##
## Exact Marginal Homogeneity Test
##
## data: response by
## conditions (First, Second)
## stratified by block
## chi-squared = 4.4545, p-value = 0.06543
```


JMP

