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1.	Introduction	
 
Statistical techniques are used for purposes such as estimating population 
parameters using either point estimates or interval estimates, developing models, 
and testing hypotheses. For each of these uses, a sample must be obtained from the 
population of interest. The immediate question is then  
 

“How large should the sample be?” 
 
If sampling is very inexpensive in a particular application, we might be tempted to 
obtain a very large sample, but settle for a small sample in applications where 
sampling is expensive. The cliche´ “bigger is better” can cause problems that users 
of statistical methods might not anticipate, however. 
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2.	Case	1/Motivation—Estimating	the	mean	of	a	population;	
Review	of	power,	relation	to	sample	size,	standard	deviation,	Type	I	
error	rate.	
 
Suppose a supplier provides laboratory mice with an advertised mean weight of 
100 g, with standard deviation 8 g.  A researcher wishes to test if a batch of mice 
recently received has a higher average weight. She will weigh a random sample of 
mice from the batch. The null hypothesis is that a population mean,  , is  equal to 
100 and we want to have a probability of 0.90 of rejecting that hypothesized value 
if the true value is actually 105. The value 0.90 is the selected power for the study: 
 

Power--the probability of rejecting the null hypothesis in favor of the 
alternative hypothesis for a specific assumed true value of the parameter 
(in this case, 105) 

 
Assume further that the chosen significance level is 0.05 and that the population 
standard deviation reported by the supplier is assumed to be true.  
 

Significance level—the probability of rejecting the null hypothesis in favor 
of the alternative hypothesis even though the null hypothesis is exactly 
true (also known as the Type I error probability) 
 

 
This will be a one-sided test since we are interested only in detecting a value 
greater than 100—that is, we have good a priori reason to believe the mean weight 
is greater than 100. 
 
Given the above information, and assuming the population is normally distributed, 
the test statistic for testing 0 0: 100H    versus : 100aH    is 

  

0

/

X
Z

n





  (1) 

  
These inputs can be entered into software (MINITAB 17, in this case), to obtain 
the necessary sample size to achieve the stated goals. 
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Necessary information: 
 

1. Null hypothesis: 0 100   ; Alternative hypothesis: 100  ; Further 
assume the population of response values is normally distributed. 

2. Significance level:    0.05 = P(conclude 100   when 100  ) ; 
3. Difference of actual mean from hypothesized mean*: 105-100 = 5; 
4. Population standard deviation, 8  ; 
5. Power: 1    0.90 = P(conclude 100   when 105  ); 

 
(*I will refer to this as the hypothesized effect size, not to be confused with 
Cohen’s standardized effect size—more on this later) 
 
The required sample size is given by 

 

 
  2

0

Z Z
n   

 

 
  

  
  (2) 

 
where: 
 
Z  is the critical value of the standard normal distribution under the null 
hypothesis, whose value is determined by the choice of significance level; 
Z  is the critical value of the standard normal distribution under the alternative, 

whose value is determined by the choice of significance level and power; 

0   is the difference of the actual mean from the hypothesized mean. 
 

  2

1.645 1.282 8
21.93 22

5
n n

 
    
 
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Using software (MINITAB): 
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Power and Sample Size  
 
1-Sample Z Test 
 
Testing mean = null (versus > null) 
Calculating power for mean = null + difference 
Alpha = 0.05  Assumed standard deviation = 8 
 
 
            Sample  Target 
Difference    Size   Power  Actual Power 
         5      22     0.9      0.900893 
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Factors that affect power/sample size. Note: All other things being fixed, greater 
power requires a larger sample size, and vice-versa. 

 
If everything else is held fixed: 

 
1. If significance level decreases (e.g., to account for multiple testing), 

power will decrease (and thus required sample size increases). 
2. If hypothesized effect size decreases power will decrease (and thus 

required sample size increases). 
3. If the estimate of the standard deviation decreases, power will increase 

(and thus required sample size decreases). 
 

 
The plot below illustrates the effect of sample size on power. Deciding upon 
sample size often involves a trade-off among sample size, power and difference 
from hypothesized value.   
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In general, any sample size/power analysis involves the following elements: 
 

1. Specify a hypothesis test on some parameter,    (e.g., population mean), 
along with the underlying probability model for the data (e.g., normal, 
lognormal); 
 

2. Specify the significance level of the test; 
 

3. Specify a value of the parameter,  ,  that reflects an alternative of scientific 
interest; 
 

4. Obtain estimates of other parameters needed to compute the power function 
of the test; 
 

5. Specify the desired power of the test when     . 
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How do we determine inputs? 
 
I. Standard deviation (and possibly) other parameters 

An accurate estimate of the standard deviation is crucial to an accurate 
sample size estimate. Three different estimates for the previous example are given 
below. Note that substantially under or overestimation of the true standard 
deviation can yield vastly different sample size estimates! 
 
 
1-Sample Z Test 
 
Testing mean = null (versus > null) 
Calculating power for mean = null + difference 
Alpha = 0.05  Assumed standard deviation = 4 
 
Sample      Target 
Difference    Size   Power  Actual Power 
5         6     0.9      0.921760 
 
 
1-Sample Z Test 
 
Testing mean = null (versus > null) 
Calculating power for mean = null + difference 
Alpha = 0.05  Assumed standard deviation = 8 
 
Sample       Target 
Difference    Size   Power  Actual Power 
5        22     0.9      0.900893 
 
 
1-Sample Z Test 
 
Testing mean = null (versus > null) 
Calculating power for mean = null + difference 
Alpha = 0.05  Assumed standard deviation = 16 
 
Sample       Target 
Difference    Size   Power  Actual Power 
5        88     0.9      0.900893 
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Of course we generally don't know the value of the population standard deviation.  
 

So what do ¥ people do in practice to get around the problem of 
unknown standard deviation? 
 

 
*Lenth (2007): “If you have no idea of  , then you are not ready to do a definitive 
study and should first do a pilot study to estimate it.” 
 
 
Ways to estimate standard deviation 
 
1) Pilot study 

1) External—Subjects used will not be part of the full study. Could be data 
collected specifically for the current study, or from a previous study 
using the same outcome. 

a) Often underestimates the true variance (or is less than the 
eventual estimate from the full study).  

b) Can be unrepresentative of the population under study. 
c) Vickers (2003)—Found 80% of clinical trials examined used a 

smaller standard deviation estimate to compute sample size than 
was eventually found in the full studies. 

 
2) Internal—Subjects used will be part of the full study. Usually works as 

follows: 
a) Sample size for the full study is estimated; 
b) At some point the standard deviation is re-estimated using the 

data collected up to that point; 
c) If the re-estimate is no bigger than the original estimate, then use 

the original sample size estimate; 
d) Otherwise, revise the sample size based on the new (larger) 

standard deviation estimate. 
Issues: 

a) At what point in the data collection should the re-estimate 
occur? 

b) If the study is stopped too soon, there will be a large variance 
associated with the estimate of the population standard 
deviation, so the latter might be poorly estimated, which in 
turn would produce a sample size that is much too large; 



11 
 

1. Could use an upper confidence bound for the standard 
deviation  

a. at least 80% confidence 
b. generally not implemented in software 

2. Note these issues also apply to external pilot studies 
 

c) Type I error rate can be inflated, since the pilot and main 
studies are not independent 

 
 

2) Based on expected range of outcome 
If outcome can be assumed approximately normally distributed, then 

ˆ
6

range   is a conservative estimate. Based on the fact that 

   3 3       should include virtually all of the distribution. 

 
 
 
 
 

II. Determining difference from hypothesized mean (effect size) 
 Define “clinically meaningful” amount 
 Think about what you “expect/hope” to see 

o Treat as an upper bound on the effect 
o Establishes minimum sample size 

 Sometimes helpful to think in terms of relative differences instead of 
absolute (e.g., is a 10% decrease in systolic blood pressure of practical 
importance?)   

o van Bell & Martin (1993), van Bell (2008) discuss using the 
coefficient of variation (CV)  in this context 

 Put yourself in the subject/patient’s shoes—e.g., would the benefits of 
reducing systolic BP by 15 points outweigh the cost, inconvenience and 
potential side effects of the treatment? 

 Software—Can help show different sample size/detectable effect 
scenarios 

 Should be specified in actual measurement units (See Lenth, 2001, 2007) 
 Should be reasonable, in the sense that an effect of this magnitude could 

be anticipated in the given field of research 
 Avoid standardized effect sizes 
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III. Power/significance level 
 
The choice of the power value and the significance level for the test should be 
based on what would seem appropriate for each specific application, rather than 
based on how they affect sample size. Ideally, costs associated with incorrect 
decisions should be estimated and factored into the determination (e.g., incorrectly 
concluding that a treatment or intervention is effective, when in reality it is not.)  
 
Mudge et al (2012) argue that “in most studies (and perhaps all) the significance 
level should be set with the objective of either minimizing the combined 
probabilities of making Type I or Type II errors at a critical effect size, or 
minimizing the overall cost associated with Type I and Type II errors given their 
respective probabilities.” The steps of their proposed method are as follows: 
 

1. Determine the critical effect size; 
2. Choose whether to minimize the average probability of Type I and Type II 

errors, or the relative cost of errors; 
3. Calculate the optimal significance level; 
4. Report all of the following for the test: 

1. Sample size; 
2. Critical effect size; 
3. Chosen relative cost of Type I to Type II error; 
4. Optimal Type I error rate; 
5. Optimal Type II error rate; 
6. Average of Type I and Type II error rates.  

 
Their suggestion involves simply averaging the probabilities of Type I and 
Type II errors, possibly weighting each based on cost or prior probabilities. 
 
While acknowledging that their method is not perfect, they claim it is a 
substantial improvement over the traditional method of basing the interpretation 
of the test on the p-value and its juxtaposition to 0.05. 
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What about confidence intervals? 
 

 In many (perhaps most) situations, confidence intervals yield at least as 
much information as p-values 

 Samples should be large enough so that point and interval estimates can be 
obtained with high precision 

 Revised sample size elements: 
1. No hypotheses regarding the value of the parameter,  .  
2. Specify the confidence level of the estimate; 
3. Specify precision, that is, answer the question, “how close to the true 

value of the parameter does the estimate need to be?”; 
4. Obtain estimates of other parameters needed to compute the precision; 
5. No concept of power, since there is no test. 

 
 
 
For the previous example, suppose it is desired to estimate the true mean with 95% 
confidence, and so that the estimate is at most 3 units from the true mean. 
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*Under options, choose “Assume population standard deviation known” 
 
Sample Size for Estimation  
 
Method 
 
Parameter            Mean 
Distribution         Normal 
Standard deviation   8 (population value) 
Confidence level     95% 
Confidence interval  Two-sided 
 
 
Results 
 
  Margin  Sample 
of Error    Size 
       3      28 
 
The required sample size is n = 28. 
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t-methods 
 
In practice, the sample standard deviation will usually be used in the analysis (thus 
a t-test or interval will be calculated instead of a z-test or interval). In that case, 
there is greater uncertainty in the estimate, which must be incorporated into the 
sample size estimate. For the case of testing the mean of a normal population, the 
formula is now 
 

 
  2

, 1 , 1

0

n nt t s
n  

 
 

 
  

  
  (3) 

 
Note that this looks very much like the formula when   is assumed known, except 
with critical values from a Student’s t-distribution replacing those of the standard 
normal distribution. This introduces two complications: 
 

1. , 1nt   has a noncentral t-distribution, for which tables are generally not 

available; 
2. n -1, the degrees of freedom, must be specified in order to determine 

, 1 , 1 and n nt t   . 

 
Thus, the calculation must be done by trial and error, and is best performed using 
software. Using Minitab to redo the sample size calculation using the above 
formula results in the slightly larger n = 24.  
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1-Sample t Test 
 
Testing mean = null (versus > null) 
Calculating power for mean = null + difference 
Alpha = 0.05  Assumed standard deviation = 8 
 
 
            Sample  Target 
Difference    Size   Power  Actual Power 
         5      24     0.9      0.907420 
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3. Comparing two means 
 

3.1.	Case	1‐‐Independent	samples	
 
The same issues are present as before, plus a few more.  
 
Necessary information: 

1. Specify hypotheses--Null hypothesis is usually 1 2 0    ; Alternative 

hypothesis: 1 2 0   ; Assume both populations of response values are 
normally distributed; 

2. Specify significance level; 
3. Specify difference between population means to be detected; 
4. Specify population standard deviations—several options 

a. population values known—can use z-test for analysis 
b. population values unknown but assumed equal—can use pooled t-test for 

analysis 
c. population values unknown and not assumed equal—will use 

Welch/Satterthwaite tests for analysis 
5. Specify power; 
6. Additionally, sample sizes may be computed to be equal or unequal. 

 
 
Example.  
Newcombe (2001) referred to a study by Heasman et al (1998) in which they found that 
the mean toothbrushing force at baseline was 220 grams for boys and 181 grams for girls. 
Motivated somewhat by this study, Newcombe (2001) stated “Suppose we decided that in 
a new study, we want 80 percent power to detect a difference of 30 grams as statistically 
significant at the 5 percent level. Based on the existing study, it seems reasonable to 
assume a SD of 130g. Suppose that, as in the published study, we expect to recruit twice 
as many girls as boys ...” 
 
 
Most software will not accommodate unequal sample sizes per group. However, SAS 
Power and Sample Size will. First, the calculation for equal sample sizes yields 296in    

per group. The second calculates 1 444n   girls and 2 222n   boys. 
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3.2.	Case	2‐‐Dependent	samples	
 
Example (Cohen, 1988, p.51): In a study to appraise the efficacy of prescribing a 
program of diet and exercises to a group of overweight male students, subjects will 
be weighed, prescribed to the program, and then weighed again 60 days later.  
 
Necessary information: 

1. 0 : 0after before dH       ; : 0a after before dH      ; 

2. 0.05  ;  
3. Detect a mean loss of 4 lb.; 
4. Desired power = 0.90; 
5. ?    

 
 
You may recall that computationally this test is identical to that described in 
Section II, treating the differences as a sample from a normal population. Thus, it 
is important to remember that while the standard deviation needed here is that of 
the difference score (before – after), the standard deviation of the difference is a 
function of both sample variances as well as the correlation, , between 
measurements:  
 

 
1 2 1 1 1 2

2 2 2y y y y y y          (4) 

 
 
*Stronger positive correlation -> smaller SD -> smaller sample size required 
*Stronger negative correlation -> larger SD -> larger sample size required 
*Correlation = 0 -> SD is the same as for independent samples 
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A pilot study could be used to estimate this standard deviation. However, if pilot 
data are unavailable, 3 parameters must be estimated to determine the 
power/sample size. 

 
 
Suppose it is assumed that 12   for both time points, and that 0.80  . Then 

1 2

ˆ 7.6y y   .  

 
Many software programs require that the value 

1 2

ˆ
y y   be supplied. A few can take 

as inputs the separate standard deviations and correlation, for instance, SAS Power 
and Sample Size: 
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What is the effect of correlation on sample size? Below is the calculation if 
0.50  :  

 

 
 
 
 

*As expected, a larger sample size is required for a weaker correlation. 
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JMP requires that 
1 2

ˆ 7.6y y    be input: 
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Lenth’s calculator also requires that 

1 2

ˆ 7.6y y    be input: 
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3.3	Using	standardized	effect	sizes	
 

Recall for the one-sample case we found 
  2

0

Z Z
n   

 

 
  

  
which is equivalent to 

   
2

2

0

Z Z Z Z
n

d
   

 


 
    

    
         

. The quantity 0 d
 



  is a standardized effect 

size. 
 
Some software (such as GPower) will allow input of a standardized effect size, 
without the need to provide an estimate of the standard deviation or hypothesized 
mean difference. Cohen (1988), based on a survey of several hundred studies in the 
social sciences, divided the effect sizes observed into “small”, “medium” and 
“large”. 
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Lenth (2007) criticized them as T-shirt effect sizes: “This is an elaborate way to 
arrive at the same sample size that has been used in past social science studies of 
large, medium, and small size (respectively). The method uses a standardized effect 
size as the goal. Think about it: for a ‘medium’ effect size, you'll choose the same n 
regardless of the accuracy or reliability of your instrument, or the narrowness or 
diversity of your subjects. Clearly, important considerations are being ignored 
here. ‘Medium’ is definitely not the message!” 

 
 
 
Illustration 
 
Suppose we plan to use BMI as the primary outcome variable for a study, and 
suppose we have two different methods to measure BMI. From past experience, 
the standard deviation of Method 1 is estimated to be 5%BF, while Method 2 is 
10%BF. We further decide we want to be able to detect a 5%BF difference in the 
means of our treatment and control groups. 
 

The effect size using Method 2 is 
5

0.5
10

d   , which Cohen would classify as 

“medium”. The required total sample size for power 0.9 and 0.05   is N = 172, 
or 86 per group.  
 

Using Method 1, however, 
5

1
5

d    (“large”), and the required sample size is N = 

46, or 23 per group. 
 
 
Depending on the method used, the same desired effect size to detect could be 
classified as either “medium” or “large” using the standardized effect size. 
 
 
A recent U.S. Dept. of Education sponsored report stated, "The widespread 
indiscriminate use of Cohen’s generic small, medium, and large effect size values 
to characterize effect sizes in domains to which his normative values do not apply 
is thus likewise inappropriate and misleading.”  
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4.	Testing/estimating	a	population	proportion	
 
We will first consider the case of a single proportion, with 0p  denoting the value  
under the null hypothesis, and p denoting the true value. For a one-sided test, the 
usual textbook test statistic (but not necessarily the best approach under all 
conditions) which is based on the assumed adequacy of the normal approximation 
to the binomial distribution is 
 

 
 

0

0 0

ˆ

1

p p
Z

p p

n





  (5) 

 
This statistic is appropriate when n is large and both 0p  and p̂  are not too far from 
0.5.  
 
Note that here we are in luck, since the standard deviation for a binary outcome is 

 1p p   , and thus can be calculated once 0p  and p have been specified. 

 
Then the expression for n is 
 

 
   

2

0 0

0

1 1Z p p Z p p
n

p p
 

   
 

  
  (6) 

 
 
Example. 
Suppose we have: 
 

1. Null hypothesis: 0.50p   ; Alternative hypothesis: 0.50p  ;  
2. Significance level:    0.05 ; 
3. Expected proportion under the alternative: 0.60p   ; 
4. Power: 1    0.80. 
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Then the required sample size is  
 

   
2

1.645 0.5 1 0.5 0.8416 0.6 1 0.6
152.5 153

0.6 0.5
n n

   
    

  
. 

 
 
 
 
Most software will compute this. Below Lenth’s calculator is used. 
 

 
 
 
 
 
 
Other approaches 
 
If the normal approximation is not expected to be adequate, due to sample size 
expectation and/or the true proportion near 0 or 1, then the above formula is not 
appropriate. There are several other approaches that may be available. 
 
 
Lenth’s calculator 
Exact: In the exact test, the significance level alpha is taken as an upper bound on 
the size of the test (its power under the null hypothesis). Since X has a discrete 
distribution, the size cannot be controlled exactly and is often much lower than the 
specified alpha. 
 
Exact (Wald CV): This is like the exact method, except the critical values are 
calculated based on an adjusted Wald statistic (Agresti and Coull, 1998). This does 
NOT guarantee that the size of the test is less than alpha. 
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SAS Power and Sample Size: 
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5.	Regression	
 
The general form of the linear regression model may be expressed as  
 

0 1 1 2 2 m mY X X X           
 

with Y the dependent variable, 1 2, , , mX X X  the independent variables (predictors, 
regressors, covariates), and   is the error term, assumed to be independent and 
have a normal distribution with mean 0 and standard deviation   . 
 
Draper and Smith (1998) suggested a simple rule of thumb to use at least 10 
observations per predictor in the model. However, their suggestion is not based 
on statistical theory, and bypasses the serious consideration of detecting results of 
practical significance with specified power.  
 
 
 

5.1.	Case	1‐‐Simple	regression	( 1m  )	
 
If we try to take an analytical approach to sample size determination, we run into 
problems, even when there is only a single predictor (Ryan, 2012). 
 
Consider the dialog help for Lenth’s calculator: 
 
“This is a simple interface for studying power and sample-size problems for 
simple or multiple linear regression models.  It is designed to study the power of 
testing one predictor, x[j], in the presence of other predictors.  The power of the t 
test of a regression coefficient depends on the error SD, the SD of the predictor 
itself, and the multiple correlation between that predictor and other predictors in 
the model.  The latter is related to the variance inflation factor.  It is assumed that 
the intercept is included in the model. 
 
The components in the dialog are as follows: 
 

1) No. of predictors: Enter the total number of predictors (independent 
variables) in the regression model. 

 
2) SD of x[j]: Enter the standard deviation of the values of the predictor of 
interest. 
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3) Alpha: The desired significance level of the test. 

 
4) Two-tailed: Check or uncheck this box depending on whether you plan 
to use a two-tailed or a one-tailed test.  If it is one-tailed, it is assumed 
right-tailed. If a left-tailed test is to be studied, reverse the signs and think 
in terms of a right-tailed test. 

 
5) Error SD: The SD of the errors from the regression model. You likely 
need pilot data or some experience using the same measurement 
instrument. 

 
6) Detectable beta[j]: The clinically meaningful value of the regression 
coefficient that you want to be able to detect. 

 
7) Power: The power of the t test, at the current settings of the parameter values.”

 
 
 
Both the standard deviation of the dependent variable (response) and the standard 
deviation of the predictor are required. If the predictor is fixed (known values) then 
estimating its standard deviation is not an issue. However, if the predictor is 
random (the more likely scenario), then pilot data may be needed to estimate both 
its standard deviation as well as that of the response. Other methods, discussed 
earlier (such as using the expected range) could also be employed. 
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Ryan (2009) suggested that it is not sufficient to simply reject 0 1: 0H   , since the 
model may still have poor predictive power. He suggests a rule of thumb (based 
upon the work of Wetz (1964)) to only conclude the model is useful if the t-
statistic for testing 0 1: 0H    is at least twice the critical value (Ryan, 2009, 
p.20).  
 

The t-statistic for testing 0 1: 0H    is 1̂

/e xx

t
s S


  , where 2

1
( )

n

xx i
i

S X X


  . 

Since 1xx xS s n   , where xs  is the standard deviation of the predictor, it 

follows the t-statistic can be written as  1 1
1

ˆ ˆ
ˆ 1

1

x

e e e

xx x

s
t n

s s s
S s n

  
 

    
 



. Then 

using the rule of thumb, we want  
 

 1 /2, 2
ˆ 1 2x

n

e

s
t n t

s  

 
   
 

  (7) 

 
 
For a two-sided test. Ryan (2009) suggests as a reasonable starting point to set 

1̂ 1x es s     . Using Lenth’s calculator with the inputs suggested above, 

indicates a sample size of 11n   would have power of 0.8385 for detecting 1̂ 1   
when 1x es s  .  
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However, the t-statistic would be  
 

1

1ˆ 1 1 10 3.16
1

x

e

s
t n

s


         
  

,  

 
and two times the test statistic value is  

 

0.025,92* 2*(2.262) 4.524t   .  

 
Thus, the rule of thumb of Ryan/Wetz suggests a sample size of at least 18n  , 
since  
 

18 4.243 2* 2.120 4.240     
 

in order to achieve the desired goal of detecting 1̂ 1   with power at least 0.80, 
while at the same time hopefully ensuring that the model will have good predictive 
power. Note that this results in much higher power (0.9781). 
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5.2.	Case	2‐‐Multiple	regression	
 
“The multiple linear regression case is far more difficult and in some ways  
is practically intractable because the values of multiple linear regression  
parameter estimates generally do not have any practical meaning when the  
predictor values are random.” (Ryan, 2009, p. 168).  
 
“If the parameter estimates do not have any meaning, then determining 
sample size so as to be able to detect regression parameters with specific 
values also seems highly questionable.” (Ryan, 2012) 
 
Adcock (1997) stated “What to do in the multiple-regression cased remains 
a topic for further study...” 

 
 
 
Let’s begin with the simplest case: Testing one regression coefficient while 
adjusting for one or more others. Thus, we wish to test 0 : 0jH   , in a model 

containing two or more predictors.  
 
It can be shown that the standard error of ˆ

j , the estimator of j , is now 

multiplied by  the variance inflation factor (VIF), where 
 

2

1

1 X

VIF
R




  

 
and 2

jXR comes from the model 0 1 1 1 1 1 1j j j j j p pX X X X X             .   

 
*The more highly correlated predictor jX  is with the other predictors, the larger 

the standard error, and thus the larger the sample size required. 
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When entering 2 or more predictors using Lenth’s calculator, an estimate of the 
VIF is required: 
  

 
 
Notice that when VIF = 1 is entered, along with the previous inputs, a sample size 
of 11 still achieves power of at least 0.80. 
 
 
However, if VIF = 2, power drops to 0.54 when 11n  , and now 18n   would be 
required to have power at least 0.80. 
 

 
 
 
Below is from Lenth’s Help menu for the Regression dialog:  
 
3) VIF[j]: (This slider appears only when there is more than one predictor.)  
Enter the variance-inflation factor for x[j].  In an experiment where you can 
actually control the x values, you probably should use an orthogonal design 
where all of the predictors are mutually uncorrelated -- in which case all the 
VIFs are 1.  Otherwise, you need some kind of pilot data to understand how the 
predictors are correlated, and you can estimate the VIFs from an analysis of 
those data. 
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Using R2 as an effect size  
 
Some software allows/requires input in terms of change of variance explained by 
the model. In the simple regression example, the test of 0 1: 0H    is equivalent to 

0 : 0H   , which implies 2 0R  . Using SAS-PSS, the same sample size as before          
( 11n  ) is required to detect an increase in variance explained of 0.50. Note, that  

2 0.50R   is not necessarily indicative of a model with good predictive ability, so 
the usefulness of the model may be questionable. 
 
 
For the multiple regression case, SAS-PSS does not allow input of the detectable 

j  and VIF. Instead, the input required is the proportion of variance ( 2R ) under the 

full (2 predictors) and reduced (1 predictor) models. Thus, we now require an 
estimate of 2R  under each of the full and reduced models.  
 
 
Suppose we assume the reduced model will account for 25% of the variation and 
the addition of jX  to the model will account for an additional 25% of variance 

explained, then we arrive at the same sample size as using Lenth’s calculator with 
the previous inputs. 
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If the inputs are changed to “R-square of Full Model” = 0.75 and “R-square of 
Reduced Model” = 0.50, only a sample size of 11n   is required. If you try some 
more examples, you will find that the sample size required to detect an increase of 
25% in variance explained decreases as the amount of variance explained in the 
reduced model increases. 
 
*Thus, a “safer” estimate for the reduced model variance explained would be a 
lower bound. 
 
 
Recap 
 
Using either the inputs required for Lenth’s calculator ( , , ,x es s VIF ), or the inputs 
required by SAS-PSS (R-square of Full Model, R-square of Reduced Model) 
probably require pilot data to obtain meaningful estimates. 
 
[The ad-hoc method of Ryan/Wetz could also be adapted to the multiple predictor 
case.] 
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6.	Ethical	and	cost	considerations	
 
Bacchetti et al. (2005) discuss ways in which ethical considerations should 
influence sample size. 
 
Sampling costs are also generally not incorporated into software, so it is up to 
practitioners to assume the initiative. As Simon (2008) stated, “No one does it this 
way, but they should” 
 
Bacchetti et al (2008) have presented alternative ways to choose sample size, 
focusing on justification of sample size based on cost efficiency—the ratio of a 
project’s scientific value relative to its cost.  
 

1. Choose the sample size that minimizes the average cost per subject; 
2. Choose sample size to minimize total cost divided by the square root of 

sample size. 
 
They argue that these methods should be regarded as acceptable alternatives to 
conventional approaches. 
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7.	Further	Discussion	
 

7.1.	More	on	confidence	intervals		
 
Ramsey and Schafer (2002, Ch.23) argue for the use of confidence intervals for 
power/sample size analysis. 
 
Possible outcomes, using confidence intervals: 
 

 
 
 

They present sample size formulas for comparing means and proportions, as well 
as for estimating a regression coefficient, designed to help avoid outcome (D): 
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Comparing two means, confidence interval for 1 2   : 
  

 22

/2,

2

8

( )
dft

n
practically significant diffference


  

 
 
 
Simple linear regression, confidence interval for slope: 
 

 22
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2 2

4
1

( )
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Multiple linear regression, confidence interval for the coefficient of a single 
predictor: 
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7.2.	Parting	Thoughts	
 
*Essential ingredients for power analysis (Lenth, 2007): 
 

1) Put science before statistics—involves serious discussion of study 
goals and effects of clinical importance, on the actual scale of 
measurement. 
 

2) Pilot study—for estimating standard deviation and make sure the 
planned procedures actually work. 

 
 
 
*Practices to avoid: 
 

1. Post-hoc power analysis (See Hoenig & Heise, 2001; Lenth, 2001, 2007) 
 

a. Avoid the claim that, “the test result is not significant but the power is 
high, which suggests evidence to support the null hypothesis”—
instead do a test of equivalence if that claim is desired. 
 

b. Avoid “chasing significance”—computing a new sample size based 
on the observed effect of a study. 
 
 

2. Use of “canned” or “t-shirt” effect sizes (Cohen, 1988). 
 

a. Lenth (2007)--“If only a standardized effect is sought without regard 
for how this relates to an absolute effect, the sample size calculation 
is just a pretense.” 
 

b. Lenth would also argue against using 2R  in the regression setting, 
without considering the separate contributions of absolute effect size, 
variance and experimental design. 
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